本文是學習B站老哥數學建模課程之后的一點筆記。 BP(back propagation)算法神經網絡的簡單原理 BP神經網絡是一種采用BP學習算法(按照誤差逆向傳播訓練)的多層前饋神經網絡,是應用最廣泛的神經網絡。 神經網絡基本結構如下: 共分為三層,可以理解為一組輸入 ...
人工神經網絡概述: 人工神經元模型: 神經網絡的分類: 按照連接方式,可以分為:前向神經網絡 vs. 反饋 遞歸 神經網絡 按照學習方式,可以分為:有導師學習神經網絡 vs. 無導師學習神經網絡 按照實現功能,可以分為:擬合 回歸 神經網絡 vs. 分類神經網絡。 數據歸一化:將數據映射到 , 或 , 區間或其他的區間。 數據歸一化的原因: .輸入數據的單位不一樣,有些數據的范圍可能特別大,導致的 ...
2019-04-24 22:23 31 23266 推薦指數:
本文是學習B站老哥數學建模課程之后的一點筆記。 BP(back propagation)算法神經網絡的簡單原理 BP神經網絡是一種采用BP學習算法(按照誤差逆向傳播訓練)的多層前饋神經網絡,是應用最廣泛的神經網絡。 神經網絡基本結構如下: 共分為三層,可以理解為一組輸入 ...
1、BP神經網絡簡介:其可以稱為“萬能的模型+誤差修正函數”,每次根據訓練得到的結果和預想結果進行誤差分析,進而修改權值和閾值,一步一步得到能輸出和預想結果一致的模型。 其是由輸入層、隱藏層和輸出層組成,對給懂的訓練集進行訓練,從而能夠依據現有變量對需要的值進行預測。 具體過程可以見博客 ...
本文主要內容包括: (1) 介紹神經網絡基本原理,(2) AForge.NET實現前向神經網絡的方法,(3) Matlab實現前向神經網絡的方法 。 第0節、引例 本文以Fisher的Iris數據集作為神經網絡程序的測試數據集。Iris數據集可以在http ...
本文主要內容包含: (1) 介紹神經網絡基本原理,(2) AForge.NET實現前向神經網絡的方法,(3) Matlab實現前向神經網絡的方法 。 第0節、引例 本文以Fisher的Iris數據集作為神經網絡程序的測試數據集。Iris數據集能夠在http ...
1. 算法原理 1.1 概述 人工神經網絡無需事先確定輸入輸出之間映射關系的數學方程,僅通過自身的訓練,學習某種規則,在給定輸入值時得到最接近期望輸出值的結果。作為一種智能信息處理系統,人工神經網絡實現其功能的核心是算法。BP神經網絡是一種按誤差反向傳播(簡稱誤差反傳)訓練的多層前饋網絡 ...
本文主要內容包括: (1) 介紹神經網絡基本原理,(2) AForge.NET實現前向神經網絡的方法,(3) Matlab實現前向神經網絡的方法 。 第0節、引例 本文以Fisher的Iris數據集作為神經網絡程序的測試數據集。Iris數據集可以在http ...
【廢話外傳】:終於要講神經網絡了,這個讓我踏進機器學習大門,讓我讀研,改變我人生命運的四個字!話說那么一天,我在亂點百度,看到了這樣的內容: 看到這么高大上,這么牛逼的定義,怎么能不讓我這個技術宅男心向往之?現在入坑之后就是下面的表情: 好了好了,玩笑就開到這里,其實我是真的很喜歡這門 ...
MATLAB 中BP神經網絡算法的實現 BP神經網絡算法提供了一種普遍並且實用的方法從樣例中學習值為實數、離散值或者向量的函數,這里就簡單介紹一下如何用MATLAB編程實現該算 ...