集合德摩根定律證明 ①$(A\cup B)'=A'\cap B'$ \(P=(A\cup B)'\quad Q=A'\cap B'\) \(if\;x\in P\quad x\in(A\cup B)'\) \(x\in (A\cup B)\) \(x\not\in A\;and\;x ...
集合德摩根定律證明 ①$(A\cup B)'=A'\cap B'$ \(P=(A\cup B)'\quad Q=A'\cap B'\) \(if\;x\in P\quad x\in(A\cup B)'\) \(x\in (A\cup B)\) \(x\not\in A\;and\;x ...
...
德摩根定律可以說是概率論以及邏輯學中很實用的一個定律了,理解起來也不難。 首先我們來復習一下 德(yi)·摩(lian)根(meng)律(bi)的兩個公式: 下面是我的一種理解方法: 我們假設事件 p ...
Latex中定義、定理、引理、證明 設置方法總結 在LaTex中需要有關定理、公理、命題、引理、定義等時,常用如下命令 \newtheorem{定理環境名}{標題}[主計數器名] \newtheorem{theorem}{Theorem}[Chapter] 意思就是定義 ...
定理內容:對於一個二分圖,如果所有左邊都小於等於右邊,存在完備匹配,即所有左部點都被匹配。 必要性顯然。充分性可以歸納。 設左部點為\(n\),\(n=1\)顯然成立。 第一種情況,左邊存在一個子集(不是全集)和右邊對應的一樣大,根據歸納假設,點集內部存在完美匹配。刪掉這些點,如果出現了一個 ...
引言 矩陣樹定理是一個基於線性代數工具,解決圖上生成樹計數相關問題的工具。 最大的特點之一就是網上很多人都不會證明。 一些線代基礎:矩陣,行列式等。 為什么要寫這個證明呢?周圍很多人認為比較浪費時間,一般不考。然而輸入感知定理其中的智慧,不僅對於圖論、線性代數有了更深入的了解,還可以為思維 ...
了解以下素數定理以及證明 一.質因數分解定理 反證法:假設存在大於1的自然數不能寫成質數的乘積,把最小的那個稱為n。 自然數可以根據其可除性(是否能表示成兩個不是自身的自然數的乘積)分成3類:質數、合數和1。 首先,按照定義,n 大於1。其次,n 不是質數,因為質\數p可以寫成質數乘積:p ...