介紹:創建一個模擬數據集,構建一個包含 5 棵決策樹的隨機森林分類模型,可視化每棵樹和集成分類器的決策邊界,比較研究。 從圖中看,每一棵單獨的決策樹都有不同程度的過擬合和錯誤,而隨機森林模型的過擬合程度較小,給出的決策邊界也較為平滑。 ...
一 LR LR,DT,SVM都有自身的特性,首先來看一下LR,工業界最受青睞的機器學習算法,訓練 預測的高效性能以及算法容易實現使其能輕松適應工業界的需求。LR還有個非常方便實用的額外功能就是它並不會給出離散的分類結果,而是給出該樣本屬於各個類別的概率 多分類的LR就是softmax ,可以嘗試不同的截斷方式來在評測指標上進行同一模型的性能評估,從而得到最好的截斷分數。LR不管是實現還是訓練或者預 ...
2019-02-26 19:35 0 1697 推薦指數:
介紹:創建一個模擬數據集,構建一個包含 5 棵決策樹的隨機森林分類模型,可視化每棵樹和集成分類器的決策邊界,比較研究。 從圖中看,每一棵單獨的決策樹都有不同程度的過擬合和錯誤,而隨機森林模型的過擬合程度較小,給出的決策邊界也較為平滑。 ...
[toc] ## 第二次作業 #### 第一題 <b>題目描述</b><br> 1.如下表數據,前四列是天氣情況(陰晴ou ...
決策樹 與SVM類似,決策樹在機器學習算法中是一個功能非常全面的算法,它可以執行分類與回歸任務,甚至是多輸出任務。決策樹的算法非常強大,即使是一些復雜的問題,也可以良好地擬合復雜數據集。決策樹同時也是隨機森林的基礎組件,隨機森林在當前是最強大的機器學習算法之一。 在這章我們會先討論如何使用 ...
回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵樹的結果: 這棵樹看起來與之前構造的分類樹類似。主要 ...
目錄 1. 載入數據 列解釋Columns: 2. 數據分析 2.1 預處理 2.2 可視化 3. 訓練模型 ...
在現實生活中,我們會遇到各種選擇,不論是選擇男女朋友,還是挑選水果,都是基於以往的經驗來做判斷。如果把判斷背后的邏輯整理成一個結構圖,你會發現它實際上是一個樹狀圖,這就是我們今天要講的決策樹。 決策樹的工作原理 決策樹基本上就是把我們以前的經驗總結出來。如果我們要出門打籃球,一般會根據“天氣 ...
分類決策樹的概念和算法比較好理解,並且這方面的資料也很多。但是對於回歸決策樹的資料卻比較少,西瓜書上也只是提了一下,並沒有做深入的介紹,不知道是不是因為回歸樹用的比較少。實際上網上常見的房價預測的案例就是一個應用回歸樹的很好的案例,所以我覺得至少有必要把回歸樹的概念以及算法弄清楚 ...
決策樹的目標是從一組樣本數據中,根據不同的特征和屬性,建立一棵樹形的分類結構。 決策樹的學習本質上是從訓練集中歸納出一組分類規則,得到與數據集矛盾較小的決策樹,同時具有很好的泛化能力。決策樹學習的損失函數通常是正則化的極大似然函數,通常采用啟發式方法,近似求解這一最優化問題。 算法原理 ...