原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何為梯度? 一般解釋: f(x)在x0的梯度:就是f(x)變化最快的方向 舉個例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是說x ...
假設有一個可導函數f x ,我們的目標函數是求解最小值 min frac f x ,假設x給定的初始值是 x 梯度下降法 將f x 在 x 處進行 階泰勒級數展開: f x f x f x x x 。 則我們的目標函數變成 min frac f x f x x x 即是 f x f x f x Delta x f x Delta x 從而得到: f x f x f x Delta x 即 Delt ...
2019-02-24 20:05 0 816 推薦指數:
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何為梯度? 一般解釋: f(x)在x0的梯度:就是f(x)變化最快的方向 舉個例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是說x ...
梯度下降法是沿着梯度下降的算法,該算法的收斂速度受梯度大小影響非常大,當梯度小時算法收斂速度非常慢。 牛頓法是通過把目標函數做二階泰勒展開,通過求解這個近似方程來得到迭代公式,牛頓法的迭代公式中用到了二階導數來做指導,所以牛頓法的收斂速度很快,但是由於要求二階導,所以牛頓法的時間復雜度非常高 ...
梯度下降法 梯度下降法用來求解目標函數的極值。這個極值是給定模型給定數據之后在參數空間中搜索找到的。迭代過程為: 可以看出,梯度下降法更新參數的方式為目標函數在當前參數取值下的梯度值,前面再加上一個步長控制參數alpha。梯度下降法通常用一個三維圖來展示,迭代過程就好像在不斷地下坡,最終 ...
目錄 一、牛頓法與擬牛頓法 1、牛頓法 1.1 原始牛頓法(假設f凸函數且兩階連續可導,Hessian矩陣非奇異) 算法1.1 牛頓法 1.2 阻尼牛頓法 ...
機器學習的本質是建立優化模型,通過優化方法,不斷迭代參數向量,找到使目標函數最優的參數向量。最終建立模型 通常用到的優化方法:梯度下降方法、牛頓法、擬牛頓法等。這些優化方法的本質就是在更新參數。 一、梯度下降法 0、梯度下降的思想 · 通過搜索方向和步長來對參數進行更新。其中搜索 ...
參考知乎:https://www.zhihu.com/question/19723347 這篇博文講牛頓法講的非常好:http://blog.csdn.net/itplus/article/details/21896453 梯度下降法 ...
1 梯度下降法 我們使用梯度下降法是為了求目標函數最小值f(X)對應的X,那么我們怎么求最小值點x呢?注意我們的X不一定是一維的,可以是多維的,是一個向量。我們先把f(x)進行泰勒展開: 這里的α是學習速率,是個標量,代表X變化的幅度;d表示的是單位步長,是一個矢量,有方向,單位長度 ...
極值,但總體來說這是很困難的,目前有一些啟發式算法可以在某種程度上處理全局極值的計算問題,但是並不能保 ...