【強化學習】值迭代和策略迭代 在強化學習中我們經常會遇到策略迭代與值迭代,但是很多人都搞不清楚他們兩個之間的區別,他們其實都是強化學習中的動態規划方法(DP)。 ——《Reinforcement Learning:An Introduction》 (一)值迭代 對每一個當前狀態 ...
. 前言 在強化學習 MDP 馬爾可夫決策過程 算法原理中我們已經介紹了強化學習中的基石 MDP,本文的任務是介紹如何通過價值函數,去尋找到最優策略,使得最后得到的獎勵盡可能的多。 . 回顧MDP 通過學習MDP我們得到了 個Bellman公式: 狀態值函數: v pi s t sum a t pi a t s t sum s t p s t s t,a t r a t s t gamma v ...
2019-02-14 22:49 0 3155 推薦指數:
【強化學習】值迭代和策略迭代 在強化學習中我們經常會遇到策略迭代與值迭代,但是很多人都搞不清楚他們兩個之間的區別,他們其實都是強化學習中的動態規划方法(DP)。 ——《Reinforcement Learning:An Introduction》 (一)值迭代 對每一個當前狀態 ...
RL是一個序列化決策過程,核心思想是通過與環境的不斷交互學習獲得最大回報; 大部分RL方法都是基於MDP的;MDP的本質是獲得一個可以使累計收益最大化的策略,並使用該策略選擇最佳動作; 動態規划是RL中的一個關鍵技術,適用於RL中已知模型求解最優策略的特殊情況,主要有 策略迭代 和 值 ...
0x00 機器學習基礎 機器學習可分為三類 監督學習 無監督學習 強化學習 三種學習類別的關鍵點 監督學習需要人為設置參數,設置好標簽,然后將數據集分配到不同標簽。 無監督學習同樣需要設定參數,對無標簽的數據集進行分組。 強化學習需要人為設置初始參數 ...
1. 前言 今天要重代碼的角度給大家詳細介紹下策略迭代的原理和實現方式。本節完整代碼GitHub。 我們開始介紹策略迭代前,先介紹一個蛇棋的游戲 它是我們后面學習的環境,介紹下它的規則: 玩家每人擁有一個棋子,出發點在圖中標為“1”的格子處。 依次擲骰子,根據骰子的點數將自 ...
1. 前言 在策略迭代最后我們發現策略迭代的收斂過程比較慢,那我們就會想有沒更好更快的迭代方法,今天我們介紹的價值迭代就是另一種尋找最優策略的解決方案。 2. 動態規划 價值迭代需要用到動態規划的思想,那我們簡單的回顧下動態規划的特點。 最優子結構:是指一個子問題的最優解是可以得到 ...
Policy Gradient Methods 之前學過的強化學習幾乎都是所謂的‘行動-價值’方法,也就是說這些方法先是學習每個行動在特定狀態下的價值,之后在每個狀態,根據當每個動作的估計價值進行選擇。這種方法可看成是一種‘間接’的方法,因為強化學習的目標是如何決策,這些方法把每個動作的價值 ...
1 概述 在該系列上一篇中介紹的基於價值的深度強化學習方法有它自身的缺點,主要有以下三點: 1)基於價值的強化學習無法很好的處理連續空間的動作問題,或者時高維度的離散動作空間,因為通過價值更新策略時是需要對每個動作下的價值函數的大小進行比較的,因此在高維或連續的動作空間下是很難 ...
0x01 價值迭代算法基礎概念 0x01.1 獎勵 若要實現價值迭代,首先要定義價值,在迷宮任務中,到達目標將獲得獎勵。 特定時間t給出獎勵Rt稱為即時獎勵 未來獲得的獎勵總和Gt被稱為總獎勵 Gt=R(t+1)+R(t+2)+R(t+3) 考慮時間因素,需要引入折扣率 ...