原文:CNN學習筆記:梯度下降法

CNN學習筆記:梯度下降法 梯度下降法 梯度下降法用於找到使損失函數盡可能小的w和b,如下圖所示,J w,b 損失函數是一個在水平軸w和b上面的曲面,曲面的高度表示了損失函數在某一個點的值 ...

2019-02-07 11:29 0 1074 推薦指數:

查看詳情

深度學習梯度下降法

損失函數 ) 接下來就要考慮幾萬個訓練樣本中代價的平均值 梯度下降法 還得 ...

Tue Jan 29 23:48:00 CST 2019 0 676
算法學習筆記——梯度下降法原理及其代碼實現

梯度下降法原理以及代碼實現 本篇博客承接本人上一篇關於逐步回歸算法的引申,本篇將開始整理梯度下降算法的相關知識。梯度下降,gradient descent(之后將簡稱GD),是一種通過迭代找最優的方式一步步找到損失函數最小值的算法,基本算法思路可總結為如下幾點: (1) 隨機設置一個初始值 ...

Wed Jan 22 22:52:00 CST 2020 0 2424
機器學習——梯度下降法

1 前言   機器學習和深度學習里面都至關重要的一個環節就是優化損失函數,一個模型只有損失函數收斂到一定的值,才有可能會有好的結果,降低損失的工作就是優化方法需做的事。常用的優化方法:梯度下降法家族、牛頓法、擬牛頓法、共軛梯度法、Momentum、Nesterov Momentum ...

Fri May 28 08:26:00 CST 2021 0 932
【機器學習梯度下降法

一、簡介 梯度下降法(gradient decent)是一個最優化算法,通常也稱為最速下降法。常用於機器學習和人工智能當中用來遞歸性地逼近最小偏差模型。 梯度下降法是求解無約束最優化問題的一種最常用的方法,它是一種迭代算法,每一步需要求解目標函數的梯度向量。 問題抽象 是 上具有一階 ...

Sat Feb 26 02:13:00 CST 2022 0 891
機器學習梯度下降法

梯度下降(最速下降法梯度下降法是一個最優化算法,通常也稱為最速下降法。最速下降法是求解無約束優化問題最簡單和最古老的方法之一,雖然現在已經不具有實用性,但是許多有效算法都是以它為基礎進行改進和修正而得到的。最速下降法 ...

Thu Jun 28 22:06:00 CST 2018 0 3776
機器學習梯度下降法

前言 以下內容是個人學習之后的感悟,轉載請注明出處~ 梯度下降法 一、簡介 梯度下降法(gradient decent)是一個最優化算法,通常也稱為最速下降法。常用於機器學習和人工智能當中用來遞歸性地 逼近最小偏差模型。 二、原理 梯度下降法 ...

Sat Aug 26 05:48:00 CST 2017 0 1094
梯度下降法和隨機梯度下降法

1. 梯度   在微積分里面,對多元函數的參數求∂偏導數,把求得的各個參數的偏導數以向量的形式寫出來,就是梯度。比如函數f(x,y), 分別對x,y求偏導數,求得的梯度向量就是(∂f/∂x, ∂f/∂y)T,簡稱grad f(x,y)或者▽f(x,y)。對於在點(x0,y0)的具體梯度向量 ...

Sat Jun 01 23:33:00 CST 2019 0 2193
梯度下降法和隨機梯度下降法

(1)梯度下降法 在迭代問題中,每一次更新w的值,更新的增量為ηv,其中η表示的是步長,v表示的是方向 要尋找目標函數曲線的波谷,采用貪心法:想象一個小人站在半山腰,他朝哪個方向跨一步,可以使他距離谷底更近(位置更低),就朝這個方向前進。這個方向可以通過微分得到。選擇足夠小的一段曲線 ...

Fri Dec 16 01:50:00 CST 2016 0 34664
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM