回歸算法 回歸是統計學中最有力的工具之一。機器學習監督學習算法分為分類算法和回歸算法兩種,其實就是根據類別標簽分布類型為離散型、連續性而定義的。回歸算法用於連續型分布預測,針對的是數值型的樣本,使用回歸,可以在給定輸入的時候預測出一個數值,這是對分類方法的提升,因為這樣可以預測連續型數據 ...
一 分類問題 監督學習,選擇題 .根據數據樣本上抽出的特征,判別其屬於有限個類別中的哪一個 .垃圾郵件識別 結果類別: 垃圾郵件 正常郵件 .文本情感褒貶分析 結果類別: 褒 貶 .圖像內容識別 選擇題:結果類別: 喵星人 汪星人 人類 草擬馬 都不是 二 回歸問題 監督學習,得分 .根據數據樣本上抽取出的特征,預測連續值的結果 . 芳華 票房值 .魔都放假具體值 .劉德華和吳彥祖的具體顏值得分 ...
2019-01-24 12:56 0 1055 推薦指數:
回歸算法 回歸是統計學中最有力的工具之一。機器學習監督學習算法分為分類算法和回歸算法兩種,其實就是根據類別標簽分布類型為離散型、連續性而定義的。回歸算法用於連續型分布預測,針對的是數值型的樣本,使用回歸,可以在給定輸入的時候預測出一個數值,這是對分類方法的提升,因為這樣可以預測連續型數據 ...
一、概述 這會是激動人心的一章,因為我們將首次接觸到最優化算法。仔細想想就會發現,其實我們日常生活中遇到過很多最優化問題,比如如何在最短時間內從A點到達B點?如何投入最少工作量卻獲得最大的效益?如何設計發動機使得油耗最少而功率最大?可見,最優化的作用十分強大。接下來,我們介紹幾個最優 ...
一、線性回歸問題 1、線性回歸問題介紹 (1)示例介紹 數據:工資和年齡(2個特征) 目標:預測銀行會貸款多少錢(標簽) 考慮:工資和年齡都會影響最終銀行貸款的結果,那么它們各自有多大的影響?(參數) 通過圖表可以看出隨着工資和年齡的增長,貸款額度也隨之增長 ...
邏輯回歸本質上也是一種線性回歸,和普通線性回歸不同的是,普通線性回歸特征到結果輸出的是連續值,而邏輯回歸增加了一個函數g(z),能夠把連續值映射到0或者1。 MLLib的邏輯回歸類有兩個:LogisticRegressionWithSGD和LogisticRegressionWithLBFGS ...
線性回歸算法,是利用數理統計中回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法。 1. 梯度下降法 線性回歸可以使用最小二乘法,但是速度比較慢,因此一般使用梯度下降法(Gradient Descent),梯度下降法又分為批量梯度下降法(Batch Gradient ...
一、線性回歸算法的簡介 線性回歸是利用數理統計中回歸分析,來確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法,運用十分廣泛。其表達形式為y = w'x+e,e為誤差服從均值為0的正態分布。 回歸分析中,只包括一個自變量和一個因變量,且二者的關系可用一條直線近似表示,這種 ...
一、回歸預測簡介 現在我們知道的回歸一詞最早是由達爾文的表兄弟Francis Galton發明的。Galton在根據上一年的豌豆種子的尺寸預測下一代豌豆種子的尺寸時首次使用了回歸預測。他在大量的對象上應用了回歸分析,包括人的身高。他注意到,如果雙親的高度比平均高度高的話,則他們的子女也傾向於 ...
大體上是Ng課week2的編程作業總結,作業中給出了實現非常好(主要是正常人都能看得懂。。)的linear regression比較完整的代碼。 因為是在MATLAB/Octave環境下編程 ...