算法雜貨鋪——分類算法之貝葉斯網絡(Bayesian networks) 2.1、摘要 在上一篇文章中我們討論了朴素貝葉斯分類。朴素貝葉斯分類有一個限制條件,就是特征屬性必須有條件獨立或基本獨立(實際上在現實應用中幾乎不可能做到完全獨立)。當這個條件 ...
目錄 貝葉斯公式 什么是貝葉斯深度學習 貝葉斯深度學習如何進行預測 貝葉斯深度學習如何進行訓練 貝葉斯深度學習和深度學習有什么區別 貝葉斯神經網絡 Bayesian neural network 和貝葉斯網絡 Bayesian network 貝葉斯深度學習框架 References 本文簡單介紹什么是貝葉斯深度學習 bayesian deep learning ,貝葉斯深度學習如何用來預測,貝 ...
2019-01-17 16:35 5 17025 推薦指數:
算法雜貨鋪——分類算法之貝葉斯網絡(Bayesian networks) 2.1、摘要 在上一篇文章中我們討論了朴素貝葉斯分類。朴素貝葉斯分類有一個限制條件,就是特征屬性必須有條件獨立或基本獨立(實際上在現實應用中幾乎不可能做到完全獨立)。當這個條件 ...
一、背景 1.1 深度神經網絡 深度神經網絡是連接主義系統,通過它通過學習例子來完成任務,而不需要事先了解這些任務。它們可以很容易地擴展到數百萬個數據點,並且可以通過隨機梯度下降進行優化。 CNN是DNN的變體,能夠適應各種非線性數據點。 起始層學習更簡單的特征,如邊和角 ...
這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A),貝 ...
一、什么是貝葉斯推斷 貝葉斯推斷(Bayesian inference)是一種統計學方法,用來估計統計量的某種性質。 它是貝葉斯定理(Bayes' theorem)的應用。英國數學家托馬斯·貝葉斯(Thomas Bayes)在1763年發表的一篇論文中,首先提出了這個定理。 貝葉斯推斷 ...
前言 本系列為機器學習算法的總結和歸納,目的為了清晰闡述算法原理,同時附帶上手代碼實例,便於理解。 目錄 k近鄰(KNN) 決策樹 線性回歸 邏輯斯蒂回歸 朴素貝葉斯 支持向量機(SVM ...
摘要:常規的神經網絡權重是一個確定的值,貝葉斯神經網絡(BNN)中,將權重視為一個概率分布。BNN的優化常常依賴於重參數技巧(reparameterization trick),本文對該優化方法進行概要介紹。 論文地址:http://proceedings.mlr.press/v37 ...
https://arxiv.org/abs/1706.00473 深度學習是一種為非線性高維數據進行降維和預測的機器學習方法。而從貝葉斯概率視角描述深度學習會產生很多優勢,即具體從統計的解釋和屬性,從對優化和超參數調整更有效的算法,以及預測性能的解釋這幾個方面進一步闡述。同時,傳統的高維統計技術 ...
1、什么是分類 分類是一種重要的數據分析形式,它提取刻畫重要數據類的模型。這種模型稱為分類器,預測分類的(離散的,無序的)類標號。例如醫生對病人進行診斷是一個典型的分類過程,醫生不是一眼就 ...