【導語】:在深度強化學習第四篇中,講了Policy Gradient的理論。通過最終推導得到的公式,本文用PyTorch簡單實現以下,並且盡可能搞清楚torch.distribution的使用方法。代碼參考了LeeDeepRl-Notes中的實現。 1. 復習 \[\theta ...
前面都是value based的方法,現在看一種直接預測動作的方法Policy Based Policy Gradient 一個介紹 karpathy的博客 一個推導 下面的例子實現的REINFORCE算法 實例代碼 ...
2019-01-10 15:15 2 621 推薦指數:
【導語】:在深度強化學習第四篇中,講了Policy Gradient的理論。通過最終推導得到的公式,本文用PyTorch簡單實現以下,並且盡可能搞清楚torch.distribution的使用方法。代碼參考了LeeDeepRl-Notes中的實現。 1. 復習 \[\theta ...
一.前言 之前我們討論的所有問題都是先學習action value,再根據action value 來選擇action(無論是根據greedy policy選擇使得action value 最大的action,還是根據ε-greedy policy以1-ε的概率選擇使得action ...
1 算法的優缺點 1.1 優點 在DQN算法中,神經網絡輸出的是動作的q值,這對於一個agent擁有少數的離散的動作還是可以的。但是如果某個agent的動作是連續的,這無疑對DQN算法是一個 ...
PPO DPPO介紹 PPO實現 代碼DPPO ...
DDPG DDPG介紹2 ddpg輸出的不是行為的概率, 而是具體的行為, 用於連續動作 (continuous action) 的預測 公式推導 推導 代碼實現的gym的pendulum游 ...
目錄 強化學習中的關鍵概念 游戲案例 策略網絡 策略網絡的訓練 源碼實現 效果演示 參考資料 本文不再維護,請移步最新博客: https://zhuanlan.zhihu.com/p/408239932 強化學習中的關鍵 ...
在之前的強化學習文章里,我們講到了經典的MDP模型來描述強化學習,其解法包括value iteration和policy iteration,這類經典解法基於已知的轉移概率矩陣P,而在實際應用中,我們很難具體知道轉移概率P。伴隨着這類問題的產生,Q-Learning通過迭代來更新Q表擬合實際 ...