第一張圖包括8層LeNet5卷積神經網絡的結構圖,以及其中最復雜的一層S2到C3的結構處理示意圖。 第二張圖及第三張圖是用tensorflow重寫LeNet5網絡及其注釋。 這是原始的LeNet5網絡: 下面是改進后的LeNet5網絡: ...
在上一篇博客CNN核心概念理解中,我們以LeNet為例介紹了CNN的重要概念。在這篇博客中,我們將利用著名深度學習框架PyTorch實現LeNet ,並且利用它實現手寫體字母的識別。訓練數據采用經典的MNIST數據集。本文主要分為兩個部分,一是如何使用PyTorch實現LeNet模型,二是實現數據准備 定義網絡 定義損失函數 訓練 測試等完整流程。 一 LeNet模型定義 LeNet是識別手寫字母 ...
2018-12-27 16:53 0 1836 推薦指數:
第一張圖包括8層LeNet5卷積神經網絡的結構圖,以及其中最復雜的一層S2到C3的結構處理示意圖。 第二張圖及第三張圖是用tensorflow重寫LeNet5網絡及其注釋。 這是原始的LeNet5網絡: 下面是改進后的LeNet5網絡: ...
環境: pytorch1.1 cuda9.0 ubuntu16.04 該網絡有3層,第一層input layer,有784個神經元(MNIST數據集是28*28的單通道圖片,故有784個神經元)。第二層為hidden_layer,設置為500個神經元。最后一層是輸出層,有10個神經元(10 ...
基於自動編碼機(autoencoder),這里網絡的層次結構為一個輸入層,兩個隱層,后面再跟着一個softmax分類器: 采用貪婪算法,首先把input和feature1看作一個自動編碼機,訓練 ...
import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #下載MINIST數據集mnist ...
本案例采用的是MNIST數據集[1],是一個入門級的計算機視覺數據集。 MNIST數據集已經被嵌入到TensorFlow中,可以直接下載和安裝。 此時,文件名為MNIST_data的 ...
記得第一次接觸手寫數字識別數據集還在學習TensorFlow,各種sess.run(),頭都繞暈了。自從接觸pytorch以來,一直想寫點什么。曾經在2017年5月,Andrej Karpathy發表的一篇Twitter,調侃道:l've been using PyTorch a few ...
關於LeNet5 LeNet-5是一個簡單的卷積神經網絡,是用於手寫字體的識別的一個經典CNN 前向傳播過程如下: INPUT層這是神經網絡的輸入,輸入圖像的尺寸統一為32×32。 C1層輸入圖片:32×32 卷積核大小:5×5 卷積核種類:6 輸出feature map大小 ...
MNIST 手寫體訓練集 2.2 開發環境搭建 2.3 Keras 訓練模型 2.4 保存模型為 o ...