第一張圖包括8層LeNet5卷積神經網絡的結構圖,以及其中最復雜的一層S2到C3的結構處理示意圖。
第二張圖及第三張圖是用tensorflow重寫LeNet5網絡及其注釋。
這是原始的LeNet5網絡:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
# 聲明輸入圖片數據,類別
x = tf.placeholder('float', [None, 784])
y_ = tf.placeholder('float', [None, 10])
# 輸入圖片數據轉化
x_image = tf.reshape(x, [-1, 28, 28, 1])
#第一層卷積層,初始化卷積核參數、偏置值,該卷積層5*5大小,一個通道,共有6個不同卷積核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.sigmoid(conv1 + bias1)
maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.sigmoid(conv2 + bias2)
maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.sigmoid(conv3 + bias3)
# 全連接層
# 權值參數
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 將卷積的產出展開
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神經網絡計算,並添加sigmoid激活函數
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 輸出層,使用softmax進行多分類
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 損失函數
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用GDO優化算法來調整參數
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)
sess = tf.InteractiveSession()
# 測試正確率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# 所有變量進行初始化
sess.run(tf.initialize_all_variables())
# 獲取mnist數據
mnist_data_set = input_data.read_data_sets('MNIST_data', one_hot=True)
# 進行訓練
start_time = time.time()
for i in range(20000):
# 獲取訓練數據
batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
# 每迭代100個 batch,對當前訓練數據進行測試,輸出當前預測准確率
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
print("step %d, training accuracy %g" % (i, train_accuracy))
# 計算間隔時間
end_time = time.time()
print('time: ', (end_time - start_time))
start_time = end_time
# 訓練數據
train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
# 關閉會話
sess.close()
下面是改進后的LeNet5網絡:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
import matplotlib.pyplot as plt
# 初始化單個卷積核上的權重
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# 初始化單個卷積核上的偏置值
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 輸入特征x,用卷積核W進行卷積運算,strides為卷積核移動步長,
# padding表示是否需要補齊邊緣像素使輸出圖像大小不變
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 對x進行最大池化操作,ksize進行池化的范圍,
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
sess = tf.InteractiveSession()
# 聲明輸入圖片數據,類別
x = tf.placeholder('float32', [None, 784])
y_ = tf.placeholder('float32', [None, 10])
# 輸入圖片數據轉化
x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
# 偏置值
b_fc1 = bias_variable([1024])
# 將卷積的產出展開
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# 神經網絡計算,並添加relu激活函數
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
W_fc2 = weight_variable([1024, 128])
b_fc2 = bias_variable([128])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2)
W_fc3 = weight_variable([128, 10])
b_fc3 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc2, W_fc3) + b_fc3)
# 代價函數
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用Adam優化算法來調整參數
train_step = tf.train.GradientDescentOptimizer(1e-5).minimize(cross_entropy)
# 測試正確率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))
# 所有變量進行初始化
sess.run(tf.initialize_all_variables())
# 獲取mnist數據
mnist_data_set = input_data.read_data_sets('MNIST_data', one_hot=True)
c = []
# 進行訓練
start_time = time.time()
for i in range(1000):
# 獲取訓練數據
batch_xs, batch_ys = mnist_data_set.train.next_batch(200)
# 每迭代10個 batch,對當前訓練數據進行測試,輸出當前預測准確率
if i % 2 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
c.append(train_accuracy)
print("step %d, training accuracy %g" % (i, train_accuracy))
# 計算間隔時間
end_time = time.time()
print('time: ', (end_time - start_time))
start_time = end_time
# 訓練數據
train_step.run(feed_dict={x: batch_xs, y_: batch_ys})
sess.close()
plt.plot(c)
plt.tight_layout()