import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
%matplotlib inline
import matplotlib.pyplot as plt
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
class ConvModel(object):
def __init__(self, lr, batch_size, iter_num):
self.lr = lr
self.batch_size = batch_size
self.iter_num = iter_num
self.X_flat = tf.placeholder(tf.float32, [None, 784])
self.X = tf.reshape(self.X_flat, [-1, 28, 28, 1]) # 本次要用卷積進行運算,所以使用2維矩陣。從這個角度講,利用了更多的位置信息。
self.y = tf.placeholder(tf.float32, [None, 10])
self.dropRate = tf.placeholder(tf.float32)
conv1 = tf.layers.conv2d(self.X, 32, 5, padding='same', activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1))
conv1 = tf.layers.max_pooling2d(conv1 , 2,2)
conv2 = tf.layers.conv2d(conv1, 64, 5, padding='same', activation=tf.nn.relu,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1))
pool1 = tf.layers.max_pooling2d(conv2, 2,2)
flatten = tf.reshape(pool1 , [-1, 7*7*64])
dense1 = tf.layers.dense(flatten, 1024, activation=tf.nn.relu, use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1))
dense1_ = tf.nn.dropout(dense1, self.dropRate)
dense2 = tf.layers.dense(dense1_, 10, activation=tf.nn.relu, use_bias=True,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1, seed=0),
bias_initializer=tf.constant_initializer(0.1))
self.loss = tf.losses.softmax_cross_entropy(onehot_labels=self.y, logits=dense2)
self.train_step = tf.train.AdamOptimizer(1e-4).minimize(self.loss )
# 用於模型訓練
self.correct_prediction = tf.equal(tf.argmax(self.y, axis=1), tf.argmax(dense2, axis=1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
# 用於保存訓練好的模型
self.saver = tf.train.Saver()
def train(self):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer()) # 先初始化所有變量。
for i in range(self.iter_num):
batch_x, batch_y = mnist.train.next_batch(self.batch_size) # 讀取一批數據
loss, _= sess.run([self.loss, self.train_step],
feed_dict={self.X_flat: batch_x, self.y: batch_y, self.dropRate: 0.5}) # 每調用一次sess.run,就像擰開水管一樣,所有self.loss和self.train_step涉及到的運算都會被調用一次。
if i%1000 == 0:
train_accuracy = sess.run(self.accuracy, feed_dict={self.X_flat: batch_x, self.y: batch_y, self.dropRate: 1.}) # 把訓練集數據裝填進去
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.X_flat: test_x, self.y: test_y, self.dropRate: 1.}) # 把測試集數據裝填進去
print ('iter\t%i\tloss\t%f\ttrain_accuracy\t%f\ttest_accuracy\t%f' % (i,loss,train_accuracy,test_accuracy))
self.saver.save(sess, 'model/mnistModel') # 保存模型
def test(self):
with tf.Session() as sess:
self.saver.restore(sess, 'model/mnistModel')
Accuracy = []
for i in range(int(10000/self.batch_size)):
test_x, test_y = mnist.test.next_batch(self.batch_size)
test_accuracy = sess.run(self.accuracy, feed_dict={self.X_flat: test_x, self.y: test_y, self.dropRate: 1.})
Accuracy.append(test_accuracy)
print('==' * 15)
print( 'Test Accuracy: ', np.mean(np.array(Accuracy)) )
model = ConvModel(0.001, 64, 30000) # 學習率為0.001,每批傳入64張圖,訓練30000次
model.train() # 訓練模型
model.test() # 預測