原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是將深度學習deeplearning與強化學習reinforcementlearning相結合 ...
原文地址:https: www.hhyz.me RL . 前言 雖然將深度學習和增強學習結合的想法在幾年前就有人嘗試,但真正成功的開端就是DeepMind在NIPS 上發表的 Playing Atari with Deep Reinforcement Learning 一文,在該文中第一次提出Deep Reinforcement Learning 這個名稱,並且提出DQN Deep Q Netwo ...
2018-12-21 11:40 0 1394 推薦指數:
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是將深度學習deeplearning與強化學習reinforcementlearning相結合 ...
文章目錄 [隱藏] 1. 強化學習和深度學習結合 2. Deep Q Network (DQN) 算法 3. 后續發展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network ...
深度強化學習(DQN-Deep Q Network)之應用-Flappy Bird 本文系作者原創,轉載請注明出處:https://www.cnblogs.com/further-further-further/p ...
參考資料: https://morvanzhou.github.io/ 非常感謝莫煩老師的教程 http://mnemstudio.org/path-finding-q-learning-tutorial.htm http://www.cnblogs.com/dragonir/p ...
在強化學習(八)價值函數的近似表示與Deep Q-Learning中,我們講到了Deep Q-Learning(NIPS 2013)的算法和代碼,在這個算法基礎上,有很多Deep Q-Learning(以下簡稱DQN)的改進版,今天我們來討論DQN的第一個改進版Nature DQN ...
Deep Q Learning 使用gym的CartPole作為環境,使用QDN解決離散動作空間的問題。 一、導入需要的包和定義超參數 二、DQN構造函數 1、初始化經驗重放buffer; 2、設置問題的狀態空間維度,動作空間維度; 3、設置e-greedy ...
在上一篇文章中介紹了MDP與Bellman方程,MDP可以對強化學習的問題進行建模,Bellman提供了計算價值函數的迭代公式。但在實際問題中,我們往往無法准確獲知MDP過程中的轉移概率$P$,因此無法直接將解決 MDP 問題的經典思路 value iteration 和 policy ...
上篇文章強化學習——狀態價值函數逼近介紹了價值函數逼近(Value Function Approximation,VFA)的理論,本篇文章介紹大名鼎鼎的DQN算法。DQN算法是 DeepMind 團隊在2015年提出的算法,對於強化學習訓練苦難問題,其開創性的提出了兩個解決辦法,在atari游戲 ...