原文:【轉】強化學習(一)Deep Q-Network

原文地址:https: www.hhyz.me RL . 前言 雖然將深度學習和增強學習結合的想法在幾年前就有人嘗試,但真正成功的開端就是DeepMind在NIPS 上發表的 Playing Atari with Deep Reinforcement Learning 一文,在該文中第一次提出Deep Reinforcement Learning 這個名稱,並且提出DQN Deep Q Netwo ...

2018-12-21 11:40 0 1394 推薦指數:

查看詳情

強化學習系列之:Deep Q Network (DQN)

文章目錄 [隱藏] 1. 強化學習和深度學習結合 2. Deep Q Network (DQN) 算法 3. 后續發展 3.1 Double DQN 3.2 Prioritized Replay 3.3 Dueling Network ...

Wed Aug 29 03:49:00 CST 2018 0 2998
強化學習(九)Deep Q-Learning進階之Nature DQN

    在強化學習(八)價值函數的近似表示與Deep Q-Learning中,我們講到了Deep Q-Learning(NIPS 2013)的算法和代碼,在這個算法基礎上,有很多Deep Q-Learning(以下簡稱DQN)的改進版,今天我們來討論DQN的第一個改進版Nature DQN ...

Tue Oct 09 04:40:00 CST 2018 28 22657
強化學習_Deep Q Learning(DQN)_代碼解析

Deep Q Learning 使用gym的CartPole作為環境,使用QDN解決離散動作空間的問題。 一、導入需要的包和定義超參數 二、DQN構造函數 1、初始化經驗重放buffer; 2、設置問題的狀態空間維度,動作空間維度; 3、設置e-greedy ...

Mon Jun 03 05:47:00 CST 2019 0 1589
Deep Learning專欄--強化學習Q-Learning與DQN(2)

在上一篇文章中介紹了MDP與Bellman方程,MDP可以對強化學習的問題進行建模,Bellman提供了計算價值函數的迭代公式。但在實際問題中,我們往往無法准確獲知MDP過程中的轉移概率$P$,因此無法直接將解決 MDP 問題的經典思路 value iteration 和 policy ...

Fri Mar 29 23:00:00 CST 2019 0 660
強化學習 7——Deep Q-Learning(DQN)公式推導

上篇文章強化學習——狀態價值函數逼近介紹了價值函數逼近(Value Function Approximation,VFA)的理論,本篇文章介紹大名鼎鼎的DQN算法。DQN算法是 DeepMind 團隊在2015年提出的算法,對於強化學習訓練苦難問題,其開創性的提出了兩個解決辦法,在atari游戲 ...

Mon Sep 07 04:56:00 CST 2020 0 1999
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM