論文地址:https://arxiv.org/abs/1706.03762 正如論文的題目所說的,Transformer中拋棄了傳統的CNN和RNN,整個網絡結構完全是由Attention機制組成。更准確地講,Transformer由且僅由self-Attenion和Feed Forward ...
概述 在介紹Transformer模型之前,先來回顧Encoder Decoder中的Attention。其實質上就是Encoder中隱層輸出的加權和,公式如下: 將Attention機制從Encoder Decoder框架中抽出,進一步抽象化,其本質上如下圖 圖片來源:張俊林博客 : 以機器翻譯為例,我們可以將圖中的Key,Value看作是source中的數據,這里的Key和Value是對應的 ...
2018-12-05 16:15 5 5500 推薦指數:
論文地址:https://arxiv.org/abs/1706.03762 正如論文的題目所說的,Transformer中拋棄了傳統的CNN和RNN,整個網絡結構完全是由Attention機制組成。更准確地講,Transformer由且僅由self-Attenion和Feed Forward ...
/ 論文:《Attention is all you need》 為什么要使用attention,這也是本 ...
Transformer 本文介紹了Transformer結構, 是一種encoder-decoder, 用來處理序列問題, 常用在NLP相關問題中. 與傳統的專門處理序列問題的encoder-decoder相比, 有以下的特點: 結構完全不依賴於CNN和RNN 完全依賴於 ...
目錄 研究背景 論文思路 實現方式細節 實驗結果 附件 專業術語列表 一、研究背景 1.1 涉及領域,前人工作等 本文主要處理語言模型任務,將Attention機制性能發揮出來,對比RNN,LSTM,GRU,Gated Recurrent Neural ...
1. 語言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 從Encoder-Decoder(Seq2Seq)理解Attention ...
一、背景 自從Attention機制在提出之后,加入Attention的Seq2Seq模型在各個任務上都有了提升,所以現在的seq2seq模型指的都是結合rnn和attention的模型。傳統的基於RNN的Seq2Seq模型難以處理長序列的句子,無法實現並行,並且面臨對齊的問題。 所以之后這類 ...
原文鏈接:https://zhuanlan.zhihu.com/p/353680367 此篇文章內容源自 Attention Is All You Need,若侵犯版權,請告知本人刪帖。 原論文下載地址: https://papers.nips.cc/paper ...
Attention is all you need 3 模型結構 大多數牛掰的序列傳導模型都具有encoder-decoder結構. 此處的encoder模塊將輸入的符號序列\((x_1,x_2,...,x_n)\)映射為連續的表示序列\({\bf z} =(z_1,z_2 ...