題目鏈接 3122. 多項式乘法同P3803 【模板】多項式乘法(FFT) 3122. 多項式乘法 題目描述 給定一個 \(n\) 次多項式 \(F(x)=a_0+a_1x+a_2x_2+…+a_nx_n\)。 以及一個 \(m\) 次多項式 \(G(x ...
基於python的快速傅里葉變換FFT 二 本文在上一篇博客的基礎上進一步探究正弦函數及其FFT變換。 知識點 FFT變換,其實就是快速離散傅里葉變換,傅立葉變換是數字信號處理領域一種很重要的算法。要知道傅立葉變換算法的意義,首先要了解傅立葉原理的意義。傅立葉原理表明:任何連續測量的時序或信號,都可以表示為不同頻率的正弦波信號的無限疊加。而根據該原理創立的傅立葉變換算法利用直接測量到的原始信號,以 ...
2018-11-20 16:14 0 8075 推薦指數:
題目鏈接 3122. 多項式乘法同P3803 【模板】多項式乘法(FFT) 3122. 多項式乘法 題目描述 給定一個 \(n\) 次多項式 \(F(x)=a_0+a_1x+a_2x_2+…+a_nx_n\)。 以及一個 \(m\) 次多項式 \(G(x ...
FFT是DFT的高效算法,能夠將時域信號轉化到頻域上,下面記錄下一段用python實現的FFT代碼。 代碼進行了詳細標注。有一個小細節是FFT對於取樣時間有要求。N點FFT進行精確頻譜分析的要求是N個取樣點包含整數個取樣對象的波形。因此N點FFT能夠完美計算頻譜,對取樣對象 ...
快速傅里葉變換(FFT) FFT 是之前學的,現在過了比較久的時間,終於打算在回顧的時候系統地整理一篇筆記,有寫錯的部分請指出來啊 qwq。 卷積 卷積、旋積或褶積(英語:Convolution)是通過兩個函數 \(f\) 和 \(g\) 生成第三個函數的一種數學算子。 定義 設 ...
本文只討論FFT在信息學奧賽中的應用 文中內容均為個人理解,如有錯誤請指出,不勝感激 前言 先解釋幾個比較容易混淆的縮寫吧 DFT:離散傅里葉變換—>$O(n^2)$計算多項式乘法 FFT:快速傅里葉變換—>$O(n*\log(n)$計算多項式乘法 FNTT/NTT:快速 ...
什么是傅里葉變換? 法國科學家傅里葉提出,任何一條周期曲線,無論多么跳躍或不規則,都能表示成一組光滑正弦曲線疊加之和。 傅里葉變換的目的是可將時域(即時間域)上的信號轉變為頻域(即頻率域)上的信號,隨着域的不同,對同一個事物的了解角度也就隨之改變,因此在時域中某些不好處理的地方,在頻域就可以 ...
快速傅里葉變換(FFT)詳解 (這是我第一次寫博,不喜勿噴...) 關於FFT已經聽聞已久了,這次終於有機會在Function2的介紹下來了解一下FFT了。 快速傅里葉變換(Fast Fourier Transformation)簡稱FFT。在各大OI競賽中也常有用到,也是一個 ...
本文主要簡單寫寫自己在算法競賽中學習FFT的經歷以及一些自己的理解和想法。 FFT的介紹以及入門就不贅述了,網上有許多相關的資料,入門的話推薦這篇博客:FFT(最詳細最通俗的入門手冊),里面介紹得很詳細。 為什么要學習FFT呢?因為FFT能將多項式乘法的時間復雜度由朴素的$O(n^2)$降到 ...
第一次接觸省選的知識點呢!zrf大佬在課堂上講的非常清楚,但由於本蒟蒻實在太菜了,直接掉線了。今天趕緊惡補一下。 那么這篇博客將分為兩塊,第一塊是FFT的推導和實現,第二塊則是FFT在OI上的應用 因為博主是蒟蒻,難免有些寫錯的地方,還請各位大佬不吝指正。 目標是能夠讓像博主這樣的蒟蒻都能 ...