先簡單理解一下卷積這個東西。 (以下轉自https://blog.csdn.net/bitcarmanlee/article/details/54729807 知乎是個好東西) 1.知乎上排名最高的解釋 首先選取知乎上對卷積物理意義解答排名最靠前的回答。 不推薦用“反轉/翻轉/反褶/對稱 ...
博客:blog.shinelee.me 博客園 CSDN 卷積運算與相關運算 在計算機視覺領域,卷積核 濾波器通常為較小尺寸的矩陣,比如 times times 等,數字圖像是相對較大尺寸的 維 多維 矩陣 張量 ,圖像卷積運算與相關運算的關系如下圖所示 圖片來自鏈接 ,其中 F 為濾波器, X 為圖像, O 為結果。 相關是將濾波器在圖像上滑動,對應位置相乘求和 卷積則先將濾波器旋轉 度 行列均 ...
2018-11-08 21:45 5 37116 推薦指數:
先簡單理解一下卷積這個東西。 (以下轉自https://blog.csdn.net/bitcarmanlee/article/details/54729807 知乎是個好東西) 1.知乎上排名最高的解釋 首先選取知乎上對卷積物理意義解答排名最靠前的回答。 不推薦用“反轉/翻轉/反褶/對稱 ...
的全部(全像素全連接),並且只是簡單的映射,並沒有對物體進行抽象處理。 誰對誰錯呢?卷積神經網絡(C ...
舉例1: 比如輸入是一個32x32x3的圖像,3表示RGB三通道,每個filter/kernel是5x5x3,一個卷積核產生一個feature map,下圖中,有6個5x5x3的卷積核,故輸出6個feature map(activation map),大小即為28x28x6 ...
卷積神經網絡這個詞,應該在你開始學習人工智能不久后就聽過了,那究竟什么叫卷積神經網絡,今天我們就聊一聊這個問題。 不用思考,左右兩張圖就是兩只可愛的小狗狗,但是兩張圖中小狗狗所處的位置是不同的,左側圖片小狗在圖片的左側,右側圖片小狗在圖片的右下方,這樣如果去用圖片特征識別出來的結果,兩張圖 ...
一、學習心得及問題 心得 趙亮:對於卷積神經網絡的定義有了初步的理解,卷積神經網絡在圖片分類、檢索、分割、檢測,人臉識別等領域有廣泛的應用。使用局部關聯、參數共享的方式解決了全連接網絡過擬合的缺點。同時也了解了卷積的具體含義,對AlexNet、ZFNet、VGG等典型的神經網絡結構有了初步 ...
在上篇中介紹的輸入層與隱含層的連接稱為全連接,如果輸入數據是小塊圖像,比如8×8,那這種方法是可行的,但是如果輸入圖像是96×96,假設隱含層神經元100個,那么就有一百萬個(96×96×100)參數需要學習,向前或向后傳播計算時計算時間也會慢很多。 解決這類問題的一種簡單 ...
卷積神經網絡 完整版:https://git.oschina.net/wjiang/Machine-Learning 卷積網絡簡介 卷積網絡(leCun,1989),也被稱為卷積神經網絡或CNN, 它是處理數據的一個特殊的神經網絡,它包含一個已知的類網格的拓撲結構。例子 ...
卷積神經網絡(CNN)是深度學習中常用的網絡架構,在智能語音中也不例外,比如語音識別。語音中是按幀來處理的,每一幀處理完就得到了相對應的特征向量,常用的特征向量有MFCC等,通常處理完一幀得到的是一個39維的MFCC特征向量。假設一段語音有N幀,處理完這段語音后得到的是一個39行N列(行表示特征 ...