原文:機器學習之線性回歸,預測函數,損失函數

機器學習最通俗的解釋就是讓機器學會決策。對於我們人來說,比如去菜市場里挑選芒果,從一堆芒果中拿出一個,根據果皮顏色 大小 軟硬等屬性或叫做特征,我們就會知道它甜還是不甜。類似的,機器學習就是把這些屬性信息量化后輸入計算機模型,從而讓機器自動判斷一個芒果是甜是酸,這實際上就是一個分類問題。 分類和回歸是機器學習可以解決兩大主要問題,從預測值的類型上看,連續變量預測的定量輸出稱為回歸 離散變量預測的定 ...

2018-11-07 16:33 0 1302 推薦指數:

查看詳情

機器學習(周志華)》筆記--線性模型(1)--凸函數損失函數線性模型的基本形式、線性回歸、w* 的代碼實現

一、預備知識 1、凸函數   凸函數:對於一元函數f(x),如果對於任意tϵ[0,1]均滿足 f(tx1+(1−t)x2) ≤ tf(x1)+(1−t)f(x2) 。   凸函數特征:     (1)凸函數的割線在函數曲線的上方。     (2)凸函數具有唯一的極小值,該極小值 ...

Fri Jan 31 01:27:00 CST 2020 0 1125
機器學習(周志華)》筆記--線性模型(3)--邏輯回歸思想、概率計算、sigmoid 函數、邏輯回歸損失函數計算

四、邏輯回歸   邏輯回歸是屬於機器學習里面的監督學習,它是以回歸的思想來解決分類問題的一種非常經典的二分類分類器。由於其訓練后的參數有較強的可解釋性,在諸多領域中,邏輯回歸通常用作baseline模型,以方便后期更好的挖掘業務相關信息或提升模型性能。 1、邏輯回歸思想   當一看到“回歸 ...

Sat Feb 01 18:40:00 CST 2020 0 751
機器學習常用回歸損失函數(超全面)

損失函數”是機器學習優化中至關重要的一部分。L1、L2損失函數相信大多數人都早已不陌生。那你了解Huber損失、Log-Cosh損失、以及常用於計算預測區間的分位數損失函數么?這些可都是機器學習大牛最常用的回歸損失函數哦! 機器學習中所有的算法都需要最大化或最小化一個函數,這個函數被稱為“目標 ...

Wed Nov 04 21:58:00 CST 2020 0 1426
機器學習基礎---邏輯回歸(假設函數線性回歸不同)

一:分類 (一)分類基礎 在分類問題中,你要預測的變量y是離散的值,我們將學習一種叫做邏輯回歸 (Logistic Regression) 的算法,這是目前最流行使用最廣泛的一種學習算法。 在分類問題中,我們嘗試預測的是結果是否屬於某一個類(例如正確或錯誤)。分類問題的例子有:判斷一封 ...

Fri May 01 04:53:00 CST 2020 0 1366
機器學習】什么是損失函數

一、定義 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。 經典機器學習算法,他們最本質的區別是分類思想(預測f(x)的表達式)不同,有的是 ...

Tue Feb 15 19:24:00 CST 2022 0 1023
機器學習損失函數

0. 前言 1. 損失函數 2. Margin 3. Cross-Entropy vs. Squared Error 總結 參考資料 0. 前言 “盡管新技術新算法層出不窮,但是掌握好基礎算法就能解決手頭 90% 的機器學習問題 ...

Fri Dec 01 05:17:00 CST 2017 0 4094
機器學習-——損失函數

###基礎概念 損失函數(loss function)是用來估量你模型的預測值f(x)與真實值Y的不一致程度,換句話,可以解釋為我們構建模型得到的預測值與真實值之間的差距。它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心 ...

Tue Oct 23 05:26:00 CST 2018 0 5430
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM