原文:tensorflow中添加L2正則化損失

方法有幾種,總結一下方便后面使用。 . tensorflow自動維護一個tf.GraphKeys.WEIGHTS集合,手動在集合里面添加 tf.add to collection 想要進行正則化懲罰的變量。 然后創建regularizer tf.contrib.layers.l regularizer REGULARIZATION RATE , 再應用函數regularization loss t ...

2018-10-16 19:01 0 7545 推薦指數:

查看詳情

tensorflow L1和L2正則化

tf.keras.regularizers下面有l1和l2正則化器,但是該正則化器的l2有點不一樣,從 ...

Sat Feb 29 00:53:00 CST 2020 0 2796
TensorFlow L2正則化

TensorFlow L2正則化 L2正則化在機器學習和深度學習非常常用,在TensorFlow中使用L2正則化非常方便,僅需將下面的運算結果加到損失函數后面即可 ...

Mon Dec 25 19:46:00 CST 2017 0 4186
L1和L2損失函數和正則化

作為損失函數 L1范數損失函數   L1范數損失函數,也被稱之為平均絕對值誤差(MAE)。總的來說,它把目標值$Y_i$與估計值$f(x_i)$的絕對差值的總和最小。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范數損失函數 ...

Wed Jan 29 23:16:00 CST 2020 0 744
L1,L2正則化損失

L1和L2是指范數,分別為1范數和2范數。 損失 L1損失 MAE(Mean absolute error)損失就是L1損失,目標值\(\boldsymbol{y}\),目標函數\(f(\cdot)\),輸入值\(\boldsymbol{x}\),則: \[\begin ...

Thu Jan 14 05:54:00 CST 2021 0 475
損失函數公式推導以及L2正則化

損失函數公式推導以及L2正則化 假設預測函數為 \(h\),預測函數中出現的所有常量為 \(\Theta\)(常量可能不止一個,所以用大寫的來表示) 例如 \(h=ax+bx^2+c\),那么 \(\Theta=(a,b,c)\) 那么 \(h_{\Theta ...

Tue Mar 15 04:06:00 CST 2022 0 689
L1正則化L2正則化

  L1和L2正則都是比較常見和常用的正則化項,都可以達到防止過擬合的效果。L1正則化的解具有稀疏性,可用於特征選擇。L2正則化的解都比較小,抗擾動能力強。 L2正則化   對模型參數的L2正則項為      即權重向量各個元素的平方和,通常取1/2。L2正則也經常被稱作“權重衰減 ...

Fri Sep 29 01:58:00 CST 2017 0 9067
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM