##基礎概念 類別不均衡是指在分類學習算法中,不同類別樣本的比例相差懸殊,它會對算法的學習過程造成重大的干擾。比如在一個二分類的問題上,有1000個樣本,其中5個正樣本,995個負樣本,在這種情況下,算法只需將所有的樣本預測為負樣本,那么它的精度也可以達到99.5%,雖然結果的精度很高,但它 ...
碰到樣本數據類別不均衡怎么辦 如果有 個樣例, 做二分類, 條數據 都屬於 正類 , 如果不處理的話 預測全部結果為 , 准確率也為 ,但這顯然不是想要的結果。 碰到這樣樣本很不平衡的樣例,應該怎樣做。 前期數據准備 . 欠采樣 . 過采樣 對樣本量偏少的數據,采用重復采樣的策略 模型中調整調整權重 很多分類模型都有設置權重的參數 . xgboost 設置 : scale pos weight ...
2018-09-19 20:36 0 2802 推薦指數:
##基礎概念 類別不均衡是指在分類學習算法中,不同類別樣本的比例相差懸殊,它會對算法的學習過程造成重大的干擾。比如在一個二分類的問題上,有1000個樣本,其中5個正樣本,995個負樣本,在這種情況下,算法只需將所有的樣本預測為負樣本,那么它的精度也可以達到99.5%,雖然結果的精度很高,但它 ...
所謂不平衡指的是:不同類別的樣本數量差異非常大。 數據規模上可以分為大數據分布不均衡和小數據分布不均衡。大數據分布不均衡:例如擁有1000萬條記錄的數據集中,其中占比50萬條的少數分類樣本便於屬於這種情況。小數據分布不均衡:例如擁有1000條數據樣本的數據集中,其中占有10條的少數分類樣本便於 ...
在實際中,訓練模型用的數據並不是均衡的,在一個多分類問題中,每一類的訓練樣本並不是一樣的,反而是差距很大。比如一類10000,一類500,一類2000等。解決這個問題的做法主要有以下幾種: 欠采樣:就是把多余的樣本去掉,保持這幾類樣本接近,在進行學習。(可能會導致過擬合) 過采樣:就是增加比較 ...
在機器學習中,我們獲取的數據往往存在一個問題,就是樣本不均勻。比如你有一個樣本集合,正例有9900個,負例100個,訓練的結果往往是很差的,因為這個模型總趨近於是正例的。 就算全是正那么,也有99%的准確率,看起來挺不錯的,但是我們要預測的負樣本很可能一個都預測不出來。 這種情況,在機器學習 ...
在機器學習的分類問題中,我們都假設所有類別的分類代價是一樣的。但是事實上,不同分類的代價是不一樣的,比如我們通過一個用於檢測患病的系統來檢測馬匹是否能繼續存活,如果我們把能存活的馬匹檢測成患病,那么這匹馬可能就會被執行安樂死;如果我們把不能存活的馬匹檢測成健康,那么就會繼續喂養這匹馬。一個代價是錯 ...
WOE&IV編碼&分箱 IV的概念和作用 概念: IV的全稱是Information Value,中文意思是信息價值,或者信息量。 作用: 我們構建分類模型時,經常需要對特征進行篩選。比如我們有200個候選特征,通常情況下 ...
本文作者用python代碼示例解釋了3種處理不平衡數據集的可選方法,包括數據層面上的2種重采樣數據集方法和算法層面上的1個集成分類器方法。 分類是機器學習最常見的問題之一,處理它的最佳方法是從分析和探索數據集開始,即從探索式數據分析(Exploratory Data Analysis ...
不平衡程度相同(即正負樣本比例類似)的兩個問題,解決的難易程度也可能不同,因為問題難易程度還取決於我們所擁有數據有多大。比如在預測微博互動數的問題中,雖然數據不平衡,但每個檔位的數據量都很大——最少的類別也有幾萬個樣本,這樣的問題通常比較容易解決;而在癌症診斷的場景中,因為患癌症的人 ...