如何求組合數\(C_a^b\) 一、預處理法一 例題:https://www.acwing.com/problem/content/887/ 理論依據:\(\huge C_a^b=C_{a-1}^b+C_{a-1}^{b-1}\) 適合場景: 1、\(\large a<=2000 ...
Warning :作者在現在粗略看了一下這個東西后發現自己好像有點鍋...之前找出來的鍋已經fixed了。但是不排除可能還有鍋。暑假應該會重寫一篇。如果各位有看到錯的地方麻煩在評論指出一下... 首先明確一下定義: C n,m 表示的意義是從 m 個數里面取出 n 個數的方案數 一.通項公式 C n,m frac m n m n 二.遞推公式 C n,m C m ,n C m,n 三.組合數相關 ...
2018-09-16 17:11 0 3262 推薦指數:
如何求組合數\(C_a^b\) 一、預處理法一 例題:https://www.acwing.com/problem/content/887/ 理論依據:\(\huge C_a^b=C_{a-1}^b+C_{a-1}^{b-1}\) 適合場景: 1、\(\large a<=2000 ...
排列組合: 排列推導: \[\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k} \] 很好證明,將定義式子寫出來后合並分數即可. 二項式定理: \[(a+b)^n=\sum_{i=0}^n\binom{n}{i}a^{n-i}b^i ...
組合數有關公式求和 \[C_{n}^{m}=C_{n-1}^{m-1}+C_{n-1}^{m} \] \[mC_{n}^{m}=nC_{n-1}^{m-1} \] \[C_{n}^{0}+C _{n}^{1}+C_{n}^{2}+\ldots \ldots +C_{n ...
\[\dbinom{n}{m}=\dbinom{n}{n-m} \] 選出補集的方案數等於選出原集合的方案數,即把補集去掉就是原集合 \[\dbinom{n}{m}=\dfrac ...
組合數學的推式子題公式基本上都有了 \[\Large\sum_{i=0}^nC_n^i=2^n \] \[\Large\sum_{i=0}^nC_n^i(-1)^i=0 \] \[\Large\sum_{i=0}^nC_n^ix^i=(1+x)^n ...
突然想到可以從集合的角度來推導組合數的遞推公式,特意記下來。 $$C_{n}^{m} = C_{n - 1}^{m - 1} + C_{n - 1}^{m}$$ 可以把$C_{n}^{m}$理解為從$n$個元素中選取$m$個元素所組成的集合的數量,也就是說這些集合中的元素個數恰好都為 ...
個排一下,有n(n-1)(n-2)...(n-m+1)種,即n!/(n-m)! 組合數:從n個中取m ...