LeNet-5是Yann LeCun在1998年設計的用於手寫數字識別的卷積神經網絡,當年美國大多數銀行就是用它來識別支票上面的手寫數字的,它是早期卷積神經網絡中最有代表性的實驗系統之一。可以說,LeNet-5就相當於編程語言入門中的“Hello world!”。 但是很奇怪的,原本 ...
原文地址:http: blog.csdn.net hjimce article details 作者:hjimce 卷積神經網絡算法是n年前就有的算法,只是近年來因為深度學習相關算法為多層網絡的訓練提供了新方法,然后現在電腦的計算能力已非當年的那種計算水平,同時現在的訓練數據很多,於是神經網絡的相關算法又重新火了起來,因此卷積神經網絡就又活了起來,再開始前,我們需要明確的是網上講的卷積神經網絡的 ...
2017-10-23 15:13 0 2434 推薦指數:
LeNet-5是Yann LeCun在1998年設計的用於手寫數字識別的卷積神經網絡,當年美國大多數銀行就是用它來識別支票上面的手寫數字的,它是早期卷積神經網絡中最有代表性的實驗系統之一。可以說,LeNet-5就相當於編程語言入門中的“Hello world!”。 但是很奇怪的,原本 ...
html { font-family: sans-serif; -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 10 ...
1、LeNet-5模型簡介 LeNet-5 模型是 Yann LeCun 教授於 1998 年在論文 Gradient-based learning applied to document recognitionr [1] 中提出的,它是第一個成功應用於數字識別問題的卷積神經網絡 ...
開局一張圖,內容全靠編。 上圖引用自 【卷積神經網絡-進化史】從LeNet到AlexNet. 目前常用的卷積神經網絡 深度學習現在是百花齊放,各種網絡結構層出不窮,計划梳理下各個常用的卷積神經網絡結構。 目前先梳理下用於圖像分類的卷積神經網絡 LeNet AlexNet ...
摘要:LeNet-5是Yann LeCun在1998年設計的用於手寫數字識別的卷積神經網絡,當年美國大多數銀行就是用它來識別支票上面的手寫數字的,它是早期卷積神經網絡中最有代表性的實驗系統之一。可以說,LeNet-5就相當於編程語言入門中的“Hello world!”。 華為的昇騰訓練芯片 ...
經典卷積神經網絡的結構一般滿足如下表達式: 輸出層 -> (卷積層+ -> 池化層?)+ -> 全連接層+ 上述公式中,“+”表示一個或者多個,“?”表示一個或者零個,如“卷積層+”表示一個或者多個卷積層,“池化層?”表示一個或者零個池化層。“->”表示 ...
1.LeNet模型 LeNet是一個早期用來識別手寫數字的卷積神經網絡,這個名字來源於LeNet論文的第一作者Yann LeCun。LeNet展示了通過梯度下降訓練卷積神經網絡可以達到手寫數字識別在當時最先進的成果,這個尊基性的工作第一次將卷積神經網絡推上舞台 上圖就是LeNet模型,下面 ...
一、CNN卷積神經網絡的經典網絡綜述 下面圖片參照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二、LeNet-5網絡 輸入尺寸:32*32 卷積層:2個 降采樣層(池化層):2個 全 ...