原文:6、DRN-----深度強化學習在新聞推薦上的應用

摘要: 提出了一種新的深度強化學習框架的新聞推薦。由於新聞特征和用戶喜好的動態特性,在線個性化新聞推薦是一個極具挑戰性的問題。 雖然已經提出了一些在線推薦模型來解決新聞推薦的動態特性,但是這些方法主要存在三個問題: 只嘗試模擬當前的獎勵 eg:點擊率 很少考慮使用除了點擊 不點擊標簽之外的用戶反饋來幫助改進推薦。 這些方法往往會向用戶推薦類似消息,這可能會導致用戶感到厭煩。 基於深度強化學習的推 ...

2018-09-14 20:50 0 1487 推薦指數:

查看詳情

深度強化學習——TRPO

TRPO 1.算法推導 ​ 由於我們希望每次在更新策略之后,新策略\(\tilde\pi\)能必當前策略\(\pi\)更優。因此我們希望能夠將\(\eta(\tilde\pi)\)寫為\(\eta ...

Fri Sep 10 22:33:00 CST 2021 0 191
深度學習強化學習的關系

強化學習是一個連續決策的過程,傳統的機器學習中的有監督學習是給定一些標注數據,學習一個好的函數,對未知數據做出很好的決策。但有時候,並不知道標注是什么,即一開始不知道什么是“好”的結果,所以RL不是給定標注,而是給一個回報函數,這個回報函數決定當前狀態得到什么樣的結果(“好”還是“壞 ...

Thu Jul 19 05:44:00 CST 2018 0 3170
深度強化學習方向論文整理

一. 開山鼻祖DQN 1. Playing Atari with Deep Reinforcement Learning,V. Mnih et al., NIPS Workshop, ...

Sun Sep 30 07:47:00 CST 2018 0 2459
深度強化學習——ppo(待重寫)

PPO abstract PPO通過與環境交互來采樣數據和使用隨機梯度上升優化"替代"目標函數之間交替使用。鑒於標准策略梯度方法對每個數據嚴格不能執行一次梯度更新,本文章提出了一個新的目標函數,該 ...

Fri Oct 08 01:43:00 CST 2021 0 119
推薦系統中如何使用強化學習呢?

一、推薦中如何定義強化學習的幾個元素 方式1: Agent:推薦引擎。 Environment:用戶。 Reward:如果一條新聞被點擊,計+1,否則為0。一次推薦中10條新聞被點擊的新聞個數作為Reward。 State:包含3個部分,分別是用戶標簽、候選新聞新聞標簽和用戶前4屏 ...

Tue Feb 23 01:44:00 CST 2021 0 287
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM