大部分基礎概念知識已經在Machine Learning|Andrew Ng|Coursera 吳恩達機器學習筆記這篇博客中羅列,因此本文僅對感覺重要或不曾了解的知識點做摘記 第1章 緒論 對於一個學習算法a,若它在某問題上比學習算法b好,則必然存在另一些問題,在那里b比a好 ...
第七章 貝葉斯分類器 . 貝葉斯決策論 貝葉斯決策論就是在概率框架下實施決策的基本方法。類比於最小二乘法。對於分類任務,在所有相關概率已知的情況下,貝葉斯決策輪考慮如何基於概率和誤判損失來選擇最優的類別標記。 對於有N種可能的標記類別的預測,是將一個真實標記為cj的樣本誤分類為ci樣本所產生的損失,所以可以得到期望損失為 被分錯損失的期望,也叫條件風險 : 期望損失 條件風險 為: 我們希望得到一 ...
2018-08-28 13:49 0 1169 推薦指數:
大部分基礎概念知識已經在Machine Learning|Andrew Ng|Coursera 吳恩達機器學習筆記這篇博客中羅列,因此本文僅對感覺重要或不曾了解的知識點做摘記 第1章 緒論 對於一個學習算法a,若它在某問題上比學習算法b好,則必然存在另一些問題,在那里b比a好 ...
一、內容大綱 1,貝葉斯定理 一、貝葉斯定理 假設對於某個數據集,隨機變量C表示樣本為C類的概率,F1表示測試樣本某特征出現的概率,套用基本貝葉斯公式,則如下所示: 上式表示對於某個樣本,特征F1出現時,該樣本被分為C類的條件概率。那么如何用上式來對測試樣本分類呢? 舉例來說,有個測試 ...
貝葉斯分類是一類分類算法的總稱,這類算法均已貝葉斯定理為基礎,因此統稱為貝葉斯分類。在貝葉斯分類器中,常用朴素貝葉斯,就類似於看見黑人,大多會認為來自非洲。 事件A在事件B(發生)的條件下的概率,與事件B在事件A(發生)的條件下的概率是不一樣的,但他們有確定的關系,貝葉斯定理就是對在這種關系 ...
朴素貝葉斯分類器是一個以貝葉斯定理為基礎,廣泛應用於情感分類領域的優美分類器。本文我們嘗試使用該分類器來解決上一篇文章中影評態度分類。 1、貝葉斯定理 假設對於某個數據集,隨機變量C表示樣本為C類的概率,F1表示測試樣本某特征出現的概率,套用基本貝葉斯公式,則如下所示: 上式表示 ...
一 綜述 由於邏輯回歸和朴素貝葉斯分類器都采用了極大似然法進行參數估計,所以它們會被經常用來對比。(另一對經常做對比的是邏輯回歸和SVM,因為它們都是通過建立一個超平面來實現分類的)本文主要介紹這兩種分類器的相同點和不同點。 二.兩者的不同點 1.兩者比較明顯的不同之處在於,邏輯回歸 ...
上一篇博客復習了貝葉斯決策論,以及生成式模型的參數方法。本篇就給出一個具體的例子:朴素貝葉斯分類器應用於文本分類。后面簡單談了一下文本分類的方法。 (五)朴素貝葉斯分類器(Naïve Bayes) 既然說到了朴素貝葉斯,那就從信息檢索的一些概念開始說起好了 ...
本博客所有文章分類的總目錄:http://www.cnblogs.com/asxinyu/p/4288836.html 微軟Infer.NET機器學習組件文章目錄:http://www.cnblogs.com/asxinyu/p/4329742.html ...