由於計算機視覺的大紅大紫,二維卷積的用處范圍最廣。因此本文首先介紹二維卷積,之后再介紹一維卷積與三維卷積的具體流程,並描述其各自的具體應用。 1. 二維卷積 圖中的輸入的數據維度為14×14">14×1414×14,過濾器大小為5× ...
. 特殊應用:人臉識別和神經網絡風格轉換 覺得有用的話,歡迎一起討論相互學習 吳恩達老師課程原地址 . 一維和三維卷積 二維和一維卷積 對於 D卷積來說,假設原始圖像為 的三通道圖像,使用 個 的卷積核 其中 表示通道數,一般只關注感受野的大小,而卷積核的深度大小與輸入的通道數相同 進行卷積,則得到大小為 大小的特征圖。 對於 D卷積而言,假設原始圖像為 的單通道灰度圖像,使用 個 的卷積核 因 ...
2018-08-18 21:38 0 1501 推薦指數:
由於計算機視覺的大紅大紫,二維卷積的用處范圍最廣。因此本文首先介紹二維卷積,之后再介紹一維卷積與三維卷積的具體流程,並描述其各自的具體應用。 1. 二維卷積 圖中的輸入的數據維度為14×14">14×1414×14,過濾器大小為5× ...
作者:szx_spark 由於計算機視覺的大紅大紫,二維卷積的用處范圍最廣。因此本文首先介紹二維卷積,之后再介紹一維卷積與三維卷積的具體流程,並描述其各自的具體應用。 1. 二維卷積 圖中的輸入的數據維度為\(14\times 14\),過濾器大小為\(5\times 5\),二者 ...
作者:凌逆戰 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看這兩個函數之前,我們需要先了解一維卷積(conv1d)和二維卷積(conv2d),二維卷積是將一個特征圖在width和height兩個方向進行滑動窗口操作,對應 ...
一維卷積只在一個維度上進行卷積操作,而二維卷積會在二個維度上同時進行卷積操作。 轉載自:https://www.cnblogs.com/LXP-Never/p/10763804.html 一維卷積:tf.layers.conv1d() 一維卷積常用於序列數據,如自然語言處理領域 ...
4.1卷積神經網絡 覺得有用的話,歡迎一起討論相互學習~ 吳恩達老師課程原地址 1.6多通道卷積 原理 對於一個多通道的卷積操作,可以將卷積核設置為一個立方體,則其從左上角開始向右移動然后向下移動,這里設置Padding模式為VALID,步長為1. 注意 ...
卷積神經網絡(CNN)是深度學習中常用的網絡架構,在智能語音中也不例外,比如語音識別。語音中是按幀來處理的,每一幀處理完就得到了相對應的特征向量,常用的特征向量有MFCC等,通常處理完一幀得到的是一個39維的MFCC特征向量。假設一段語音有N幀,處理完這段語音后得到的是一個39行N列(行表示特征 ...
一、前言 1、空間不變性:我們使用的無論哪種方法都應該和物體的位置無關 局部性:神經網絡的底層應該只探索輸入圖像中的局部區域,而不考慮圖像遠處區域的內容,這就是“局部性”原則 平移不變性:不管出現在圖像中的哪個位置,神經網絡的底層應該對相同的圖像區域做類似的相應 2、卷積 ...
image 表示。 4.7深度卷積神經網絡在學什么What are deep ConvNets ...