原文:深度學習(九)過擬合和欠擬合

過擬合和欠擬合是在網絡訓練中常常碰到的問題 過擬合 overfit :訓練誤差小,但是對於測試集上的誤差很大。可能模型過於復雜,訓練中只 記住 了訓練樣本,然而其泛化誤差卻很高。 欠擬合 underfit :訓練誤差很大,無法找到合適的函數描述數據集 下面介紹這兩種情況下常用的一些trick方法 如何防止過擬合 過擬合的原因基本是特征維度太多,模型過復雜,參數太多,訓練數據太少,噪聲過多等,導致擬 ...

2018-08-17 18:53 0 1247 推薦指數:

查看詳情

機器學習擬合和過擬合(一)

1.擬合(underfitting)與過擬合(overfitting) 在機器學習中,我們的主要思想是通過對數據集的學習來生成我們的假設模型。在對數據集進行擬合的過程中,我們可能會遇到擬合和過擬合的問題。以身高預測的例子為例,這里給出7-18歲男生的身高標准(數據來源:7 歲~18 歲兒童 ...

Sun Nov 10 04:34:00 CST 2019 0 352
機器學習:什么是擬合和過擬合

https://blog.csdn.net/u011630575/article/details/71158656 1. 什么是擬合和過擬合 先看三張圖片,這三張圖片是線性回歸模型 擬合的函數和訓練集的關系 第一張圖片擬合的函數和訓練集誤差較大,我們稱這種情況為 擬合 第二張 ...

Fri May 11 02:07:00 CST 2018 0 1983
擬合和過擬合

  機器學習是利用模型在訓練集中進行學習,在測試集中對樣本進行預測。模型對訓練集數據的誤差稱為經驗誤差,對測試集數據的誤差稱為泛化誤差。模型對訓練集以外樣本的預測能力稱為模型的泛化能力。   擬合(underfitting)和過擬合(overfitting)是模型泛化能力不高的兩種常見原因 ...

Tue Nov 16 01:26:00 CST 2021 0 110
擬合、過擬合

擬合擬合以及解決方法 訓練誤差和泛化誤差 在機器學習中,我們將數據分為訓練數據、測試數據(或者訓練數據、驗證數據、測試數據,驗證數據也是訓練數據的一部分。)訓練誤差是模型在訓練數據集上表現出來的誤差,泛化誤差(也可稱為測試誤差)是在測試數據集上表現出來的誤差的期望。,例如線性回歸用到 ...

Sun Feb 16 07:23:00 CST 2020 0 195
擬合擬合

擬合擬合 目錄 一、 過擬合(overfitting)與擬合(underfitting) 2 1. 過擬合 3 2. 擬合(高偏差) 3 3. 偏差(Bias) 3 4. 方差(Variance ...

Fri Jul 20 06:51:00 CST 2018 1 4676
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM