這篇博文主要是解釋偏差和方差,以及如何利用偏差和方差理解機器學習算法的泛化性能 綜述 在有監督學習中,對於任何學習算法而言,他們的預測誤差可分解為三部分 偏差 方差 噪聲 噪聲屬於不可約減誤差,無論使用哪種算法,都無法減少噪聲。 通常噪聲是從問題的選定框架中引入的錯誤 ...
https: blog.csdn.net ChenVast article details 符號 涵義 測試樣本 數據集 在數據集中的標記 的真實標記 訓練集學得的模型 由訓練集學得的模型對的預測輸出 模型對的期望預測輸出 方差 在一個訓練集D上模型f對測試樣本x的預測輸出為f x D , 那么學習算法f對測試樣本x的期望預測為: 上面的期望預測也就是針對不同數據集D,f對x的預測值取其期望 平均 ...
2018-08-16 08:52 0 3168 推薦指數:
這篇博文主要是解釋偏差和方差,以及如何利用偏差和方差理解機器學習算法的泛化性能 綜述 在有監督學習中,對於任何學習算法而言,他們的預測誤差可分解為三部分 偏差 方差 噪聲 噪聲屬於不可約減誤差,無論使用哪種算法,都無法減少噪聲。 通常噪聲是從問題的選定框架中引入的錯誤 ...
原文:http://www.zhihu.com/question/20448464 5 個回答 .zm-item-answer"}" data-init="{" ...
一、經驗誤差與擬合 1、模型的評估 機器學習的目的是使學到的模型不僅對已知數據而且對未知數據都能有很好的預測能力。不同的學習方法會訓練出不同的模型,不同的模型可能會對未知數據作出不同的預測,所以,如何評價模型好壞,並選擇出好的模型是我們所學的重點 ...
偏差、方差的權衡(trade-off): 偏差(bias)和方差(variance)是統計學的概念,剛進公司的時候,看到每個人的嘴里隨時蹦出這兩個詞,覺得很可怕。首先得明確的,方差是多個模型間的比較,而非對一個模型而言的,對於單獨的一個模型,比如說: 這樣的一個給定了具體 ...
目錄 引言 經驗誤差、測試誤差、泛化誤差定義 泛化誤差的偏差-方差分解 偏差-方差圖解 偏差-方差tradeoff 模型復雜度 bagging和boosting 解決偏差-方差問題 針對偏差:避免欠擬合 針對方差:避免 ...
數學解釋 偏差:描述的是預測值(估計值)的期望與真實值之間的差距。偏差越大,越偏離真實數據,如下圖第二行所示。 方差:描述的是預測值的變化范圍,離散程度,也就是離其期望值的距離。方差越大,數據的分布越分散,如下圖右列所示。 機器學習中的偏差和方差 首先,假設 ...
模型性能的度量 目標:已知樣本\((x_1, y_1),(x_2,y_2),...,(x_n, y_n)\),要求擬合出一個模型(函數)\(\hat{f}\),其預測值與樣本實際值y的誤差最小。 考慮到樣本數據其實是采樣,y並不是真實值本身,假設真實模型(函數)是f,則采樣值\(y=f(x ...
什么是模型的方差和偏差 我們經常用過擬合、欠擬合來定性地描述模型是否很好地解決了特定的問題。從定量的角度來說,可以用模型的偏差(Bias)與方差(Variance)來描述模型的性能。在有監督學習中,模型的期望泛化誤差可以分解成三個基本量的和---偏差、方差和噪聲。 偏差、方差和噪聲 1)使用 ...