多分類及多標簽分類 單標簽二分類 單標簽二分類問題為最為常見的算法,主要指:label的取值只有兩種,即每個實例可能的類別只有兩種(A or B);此時的分類算法其實是在構建一個分類的邊界將數據划分為兩個類別; 常見的二分類算法有:Logistic,SVM,KNN等 \[y=f(x ...
Machine Learning Online Class Exercise Part : One vs all Instructions This file contains code that helps you get started on the linear exercise. You will need to complete the following functions in t ...
2018-08-19 12:30 0 863 推薦指數:
多分類及多標簽分類 單標簽二分類 單標簽二分類問題為最為常見的算法,主要指:label的取值只有兩種,即每個實例可能的類別只有兩種(A or B);此時的分類算法其實是在構建一個分類的邊界將數據划分為兩個類別; 常見的二分類算法有:Logistic,SVM,KNN等 \[y=f(x ...
等);在此基礎上設計使用該二分類器實現三分類問題的策略,並程序實現,畫出分類結果直接采用現成的可實現多分類的方法(如 ...
本文是機器學習系列的第三篇,算上前置機器學習系列是第八篇。本文的概念相對簡單,主要側重於代碼實踐。 上一篇文章說到,我們可以用線性回歸做預測,但顯然現實生活中不止有預測的問題還有分類的問題。我們可以從預測值的類型上簡單區分:連續變量的預測為回歸,離散變量的預測為分類。 一、邏輯回歸:二分類 ...
簡介 上一講我們實現了一個簡單二元分類器:LogisticRegression,但通常情況下,我們面對的更多是多分類器的問題,而二分類轉多分類的通常做法也很朴素,一般分為兩種:one-vs-rest以及one-vs-one。顧名思義,one-vs-rest將多類別中的其中一類作為正類,剩余 ...
,對於直線或許你也知道,可以將數據集一分為二為正類和負類。用一對多的分類思想,我們可以將其用在多類分類 ...
一、問題描述 現實中常遇到多分類學習任務,有些二分類學習方法可直接推廣到多分類,但在更多情況下,我們是基於一些基本策略,利用二分類學習器來解決多分類問題。 假設有N個類別C1,C2,......,CN,多分類學習的基本思路是“拆解法”,即將多分類任務拆分為若干個二分類任務 ...
一、問題描述 現實中常遇到多分類學習任務,有些二分類學習方法可直接推廣到多分類,但在更多情況下,我們是基於一些基本策略,利用二分類學習器來解決多分類問題。 假設有N個類別C1,C2,......,CN,多分類學習的基本思路是“拆解法”,即將多分類任務拆分為若干個二分類任務 ...
本作業使用邏輯回歸(logistic regression)和神經網絡(neural networks)識別手寫的阿拉伯數字(0-9) 關於邏輯回歸的一個編程練習,可參考:Stanford coursera Andrew Ng 機器學習課程編程作業(Exercise 2)及總結 下面使用邏輯 ...