機器學習基礎 目錄 機器學習基礎 1. 概率和統計 2. 先驗概率(由歷史求因) 3. 后驗概率(知果求因) 4. 似然函數(由因求果) 5. 有趣的野史--貝葉斯和似然之爭-最大似然概率(MLE)-最大后驗概率(MAE ...
最大似然估計 Maximum likelihood estimation, 簡稱MLE 和最大后驗概率估計 Maximum aposteriori estimation, 簡稱MAP 是很常用的兩種參數估計方法。 最大似然估計 MLE 在已知試驗結果 即是樣本 的情況下,用來估計滿足這些樣本分布的參數,把可能性最大的那個參數作為真實的參數估計。 也就是說,最大似然估計,就是利用已知的樣本結果,反 ...
2018-08-07 21:40 0 1626 推薦指數:
機器學習基礎 目錄 機器學習基礎 1. 概率和統計 2. 先驗概率(由歷史求因) 3. 后驗概率(知果求因) 4. 似然函數(由因求果) 5. 有趣的野史--貝葉斯和似然之爭-最大似然概率(MLE)-最大后驗概率(MAE ...
https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 頻率學派 - Frequentist - Maximum Likelihood Estimation (MLE,最大似然估計) 貝葉斯 ...
貝葉斯估計、最大似然估計(MLE)、最大后驗概率估計(MAP)這幾個概念在機器學習和深度學習中經常碰到,讀文章的時候還感覺挺明白,但獨立思考時經常會傻傻分不清楚(😭),因此希望通過本文對其進行總結。 2. 背景知識 注:由於概率 ...
問題:這些估計都是干嘛用的?它們存在的意義的是什么? 有一個受損的骰子,看起來它和正常的骰子一樣,但實際上因為受損導致各個結果出現的概率不再是均勻的 \(\frac{1}{6}\) 了。我們想知道這個受損的骰子各個結果出現的實際概率。准確的實際概率我們可能永遠無法精確的表示出 ...
^* = argmaxP(D|\theta) \] MAP是最大后驗概率Maximum A Posteriori Es ...
原文地址:https://zhuanlan.zhihu.com/p/72370235 好文必須共享,感謝貪心科技的李文哲老師。講得非常透徹。 以下是我的學習筆記 MLE(極大似然估計)、MAP(最大后驗估計)以及貝葉斯估計(Bayesian) 三者的關系是什么呢? 一個具體的例子 ...
1) 極/最大似然估計 MLE 給定一堆數據,假如我們知道它是從某一種分布中隨機取出來的,可是我們並不知道這個分布具體的參,即“模型已定,參數未知”。例如,我們知道這個分布是正態分布,但是不知道均值和方差;或者是二項分布,但是不知道均值。 最大似然估計(MLE,Maximum ...
1) 最大似然估計 MLE 給定一堆數據,假如我們知道它是從某一種分布中隨機取出來的,可是我們並不知道這個分布具體的參,即“模型已定,參數未知”。例如,我們知道這個分布是正態分布,但是不知道均值和方差;或者是二項分布,但是不知道均值。 最大似然估計(MLE,Maximum Likelihood ...