原文:機器學習模型評估指標匯總

在使用機器學習算法過程中,針對不同的問題需要不用的模型評估標准,這里統一匯總。主要以兩大類分類與回歸分別闡述。 一 分類問題 混淆矩陣 混淆矩陣是監督學習中的一種可視化工具,主要用於比較分類結果和實例的真實信息。矩陣中的每一行代表實例的預測類別,每一列代表實例的真實類別。 准確率 Accuracy 准確率是最常用的分類性能指標。Accuracy TP TN TP FN FP TN 即正確預測的正反 ...

2018-08-06 18:14 1 18533 推薦指數:

查看詳情

機器學習模型評估指標匯總 (一)

參考:https://www.cnblogs.com/zongfa/p/9431807.html 在使用機器學習算法過程中,針對不同的問題需要不用的模型評估標准,這里統一匯總。主要以兩大類分類與回歸分別闡述。 一、分類問題 1、混淆矩陣 混淆矩陣是監督學習中 ...

Sun Dec 19 05:51:00 CST 2021 0 124
機器學習模型評估指標匯總 (二)

參考:https://zhuanlan.zhihu.com/p/36305931 1、回歸(Regression)算法指標 Mean Absolute Error 平均絕對誤差 Mean Squared Error 均方誤差 ...

Sun Dec 19 05:53:00 CST 2021 0 137
機器學習模型評估指標總結

本文對機器學習模型評估指標進行了完整總結。機器學習的數據集一般被划分為訓練集和測試集,訓練集用於訓練模型,測試集則用於評估模型。針對不同的機器學習問題(分類、排序、回歸、序列預測等),評估指標決定了我們如何衡量模型的好壞 一、Accuracy 准確率是最簡單的評價指標,公式 ...

Mon Jul 05 22:52:00 CST 2021 0 162
機器學習模型評估指標總結

常用機器學習算法包括分類、回歸、聚類等幾大類型,以下針對不同模型總結其評估指標 一、分類模型 常見的分類模型包括:邏輯回歸、決策樹、朴素貝葉斯、SVM、神經網絡等,模型評估指標包括以下幾種: (1)二分類問題   (a)混淆矩陣     准確率A:預測正確個數占總數的比例 ...

Thu Aug 16 07:41:00 CST 2018 0 1049
機器學習基礎 | 回歸模型評估指標

目錄 MAE系列 MSE系列 R²系列 回歸模型中常用的評估指標可以分如下幾類: MAE系列,即由Mean Absolute Error衍生得到的指標; MSE系列,即由Mean Squared Error衍生得到的指標; R²系列; 注 ...

Sun Mar 22 01:04:00 CST 2020 0 1013
機器學習基礎 | 分類模型評估指標

目錄 成對指標 錯誤率和正確率 Precision、Recall TPR(Sensitivity)、TNR(Specificity) 綜合指標 F-Score Matthews Correlaton ...

Sat Mar 21 20:20:00 CST 2020 0 1122
二、機器學習模型評估

二、機器學習模型評估 2.1 模型評估:基本概念 錯誤率(Error Rate) 預測錯誤的樣本數a占樣本總數的比例m \[E=\frac{a}{m} \] 准確率(Accuracy) 准確率=1-錯誤率准確率=1−錯誤率 誤差 ...

Wed Jul 21 22:14:00 CST 2021 0 138
機器學習模型評估

'沒有測量,就沒有科學'這是科學家門捷列夫的名言。在計算機科學特別是機器學習領域中,對模型評估同樣至關重要,只有選擇與問題相匹配的評估方法,才能快速地發現模型選擇或訓練過程中出現的問題,迭代地對模型進行優化。模型評估主要分為離線評估和在線評估兩個階段。針對分類、排序、回歸、序列預測等不同類 ...

Sat Jun 22 01:37:00 CST 2019 0 1420
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM