12.支持向量機 覺得有用的話,歡迎一起討論相互學習~ 吳恩達老師課程原地址 參考資料 斯坦福大學 2014 機器學習教程中文筆記 by 黃海廣 12.1 SVM損失函數 從邏輯回歸到支持向量機 為了描述支持向量機,事實上,我將會從邏輯回歸開始展示 ...
主要內容: 一.損失函數 二.決策邊界 三.Kernel 四.使用SVM 有關SVM數學解釋:機器學習筆記 八 震驚 支持向量機 SVM 居然是這種機 一.損失函數 二.決策邊界 對於: 當C非常大時,括號括起來的部分就接近於 ,所以就變成了: 非常有意思的是,在最小化 j 的時候,最小間距也達到最大。原因如下: 所以: 即:如果我們要最小化 j ,就要使得 盡量小,而當 最小時,又因為,所以p ...
2018-07-22 09:09 0 881 推薦指數:
12.支持向量機 覺得有用的話,歡迎一起討論相互學習~ 吳恩達老師課程原地址 參考資料 斯坦福大學 2014 機器學習教程中文筆記 by 黃海廣 12.1 SVM損失函數 從邏輯回歸到支持向量機 為了描述支持向量機,事實上,我將會從邏輯回歸開始展示 ...
12.支持向量機 覺得有用的話,歡迎一起討論相互學習~ 吳恩達老師課程原地址 參考資料 斯坦福大學 2014 機器學習教程中文筆記 by 黃海廣 12.2 大間距的直觀理解- Large Margin Intuition 人們有時將支持向量機看作是大間 ...
機器學習定義 1959年Arthur Samuel曾經這樣定義機器學習:Field of study that gives computers the ability to learn without being explicitly programmed.Samuel 本人也寫了一個西洋棋 ...
定義一些名詞 欠擬合(underfitting):數據中的某些成分未被捕獲到,比如擬合結果是二次函數,結果才只擬合出了一次函數。 過擬合(overfitting):使用過量的特征集合,使模型過於復雜。 參數學習算法(parametric learning algorithms):用固定的參數 ...
朴素貝葉斯算法(Naive Bayes)(續學習筆記四) 兩個朴素貝葉斯的變化版本 x_i可以取多個值,即p(x_i|y)是符合多項式分布的,不是符合伯努利分布的。其他的與符合伯努利的情況一樣。(同時也提供一種思路將連續型變量變成離散型的,比如說房間的面積可以進行離散分類,然后運用這個朴素貝葉 ...
17年開始,網上的機器學習教程逐漸增多,國內我所了解的就有網易雲課堂、七月、小象學院和北風。他們的課程側重點各有不同,有些側重理論,有些側重實踐,結合起來學習事半功倍。但是論經典,還是首推吳恩達的機器學習課程。 吳大大14年在coursera的課程通俗易懂、短小精悍,在講解知識點的同時,還會穿插 ...
網址:https://www.bilibili.com/video/av50747658/ (b站找的有中文字幕的視頻) 第一周 一、引言 1.1 歡迎 1.2 機器學習是什么 1.3 監督學習 1.4 無監督學習 二、單變量線性回歸 2.1 模型表示 2.2 代價函數 2.3 ...
本章講述了機器學習中如何解決過擬合問題——正則化。講述了正則化的作用以及在線性回歸和邏輯回歸是怎么參與到梯度優化中的。 更多內容參考 機器學習&深度學習 在訓練過程中,在訓練集中有時效果比較差,我們叫做欠擬合;有時候效果過於完美,在測試集上效果很差,我們叫做過擬合。因為欠擬合 ...