SVM分類,就是找到一個平面,讓兩個分類集合的支持向量或者所有的數據(LSSVM)離分類平面最遠; SVR回歸,就是找到一個回歸平面,讓一個集合的所有數據到該平面的距離最近。 SVR是支持向量回歸(support vector regression)的英文縮寫,是支持向量機(SVM)的重要 ...
SVM分類,就是找到一個平面,讓兩個分類集合的支持向量或者所有的數據 LSSVM 離分類平面最遠 SVR回歸,就是找到一個回歸平面,讓一個集合的所有數據到該平面的距離最近。 SVR是支持向量回歸 support vector regression 的英文縮寫,是支持向量機 SVM 的重要的應用分支。 傳統回歸方法當且僅當回歸f x 完全等於y時才認為預測正確,如線性回歸中常用 f x y 來計算其 ...
2018-05-09 12:29 0 6116 推薦指數:
SVM分類,就是找到一個平面,讓兩個分類集合的支持向量或者所有的數據(LSSVM)離分類平面最遠; SVR回歸,就是找到一個回歸平面,讓一個集合的所有數據到該平面的距離最近。 SVR是支持向量回歸(support vector regression)的英文縮寫,是支持向量機(SVM)的重要 ...
文章內容均來自斯坦福大學的Andrew Ng教授講解的Machine Learning課程,本文是針對該課程的個人學習筆記,如有疏漏,請以原課程所講述內容為准。感謝博主Rachel Zhang 的個人筆記,為我做個人學習筆記提供了很好的參考和榜樣。 § 3. 邏輯回歸 ...
CART決策樹又稱分類回歸樹,當數據集的因變量為連續性數值時,該樹算法就是一個回歸樹,可以用葉節點觀察的均值作為預測值;當數據集的因變量為離散型數值時,該樹算法就是一個分類樹,可以很好的解決分類問題。但需要注意的是,該算法是一個二叉樹,即每一個非葉節點只能引伸出兩個分支,所以當某個非葉節點 ...
1. Classification 這篇文章我們來討論分類問題(classification problems),也就是說你想預測的變量 y 是一個離散的值。我們會使用邏輯回歸算法來解決分類問題。 之前的文章中,我們討論的垃圾郵件分類實際上就是一個分類問題。類似的例子還有很多,例如一個在線 ...
一、邏輯回歸的概念 邏輯回歸又稱logistic回歸分析,是一種廣義的線性回歸分析模型,常用於數據挖掘,經濟預測等領域。邏輯回歸從本質來說屬於二分類問題,是基於Sigmoid函數(又叫“S型函數”)的有監督二類分類模型。 二、Sigmoid函數 Sigmoid函數公式 ...
注:最近開始學習《人工智能》選修課,老師提綱挈領的介紹了一番,聽完課只了解了個大概,剩下的細節只能自己繼續摸索。 從本質上講:機器學習就是一個模型對外界的刺激(訓練樣本)做出反應,趨利避害(評價標准)。 1. 什么是邏輯回歸? 許多人對線性回歸都比較熟悉,但知道邏輯回歸的人可能就要 ...
核邏輯回歸(Kernel Logistic Regression) SVM 和 Regularization 之間的聯系 軟間隔支持向量機的原最優化問題為: \[\begin{aligned} \min _ { b , \mathbf { w } , \xi } & \frac ...
注:最近在工作中,高頻率的接觸到了SVM模型,而且還有使用SVM模型做回歸的情況,即SVR。另外考慮到自己從第一次知道這個模型到現在也差不多兩年時間了,從最開始的騰雲駕霧到現在有了一點直觀的認識,花費了不少時間。因此在這里做個總結,比較一下使用同一個模型做分類和回歸之間的差別,也紀念一下與SVM ...