原文:貝葉斯學習小結

貝葉斯學習小結 朴素貝葉斯和貝葉斯信念網絡學習,知識點以及個人一些理解的小結。 概率論只不過是把常識用數學公式表達了出來。 拉普拉斯 .本文思路分析 基本概率公式:條件概率,全概率,貝葉斯定理 朴素貝葉斯算法:極大似然估計,判定准則,拉普拉斯平滑 半朴素貝葉斯 貝葉斯信念網絡:結構學習,參數學習 基本概率公式 條件概率:百度百科:條件概率 P A B frac P A P B A P B 聯合概率 ...

2018-07-02 10:13 0 903 推薦指數:

查看詳情

分類小結

在《之朴素理解》比較詳細地總結了一個朴素。這里再對非朴素做一個小結,以了結分類。 1、非朴素公式 1.1 高維高斯分布 在此之前,我們同樣先需准備一些數學知識,高維高斯概率分布,或者也叫做聯合高斯概率分布,它有如下公式 \[p(\mathbf ...

Tue Nov 20 18:29:00 CST 2018 2 1077
學習1

一、什么是推斷 推斷(Bayesian inference)是一種統計學方法,用來估計統計量的某種性質。 它是貝葉斯定理(Bayes' theorem)的應用。英國數學家托馬斯·(Thomas Bayes)在1763年發表的一篇論文中,首先提出了這個定理。 推斷 ...

Thu May 26 23:11:00 CST 2016 0 2038
分層學習

頻率推理(Frequentist inference is a type of statistical inference that draws conclusions from sample dat ...

Thu May 18 01:34:00 CST 2017 0 1316
朴素算法原理小結

    在所有的機器學習分類算法中,朴素和其他絕大多數的分類算法都不同。對於大多數的分類算法,比如決策樹,KNN,邏輯回歸,支持向量機等,他們都是判別方法,也就是直接學習出特征輸出Y和特征X之間的關系,要么是決策函數$Y=f(X)$,要么是條件分布$P(Y|X)$。但是朴素卻是生成 ...

Thu Nov 17 01:25:00 CST 2016 103 82287
機器學習-算法

0. 前言 這是一篇關於方法的科普文,我會盡量少用公式,多用平白的語言敘述,多舉實際例子。更嚴格的公式和計算我會在相應的地方注明參考資料。方法被證明是非常 general 且強大的推理框架,文中你會看到很多有趣的應用。 1. 歷史 托馬斯·(Thomas Bayes)同學 ...

Thu Jul 19 01:47:00 CST 2018 0 2386
機器學習 - 朴素

簡介 朴素是一種基於概率進行分類的算法,跟之前的邏輯回歸有些相似,兩者都使用了概率和最大似然的思想。但與邏輯回歸不同的是,朴素斯通過先驗概率和似然概率計算樣本在每個分類下的概率,並將其歸為概率值最大的那個分類。朴素適用於文本分類、垃圾郵件處理等NLP下的多分類問題。 核心 ...

Fri Aug 06 01:51:00 CST 2021 0 199
機器學習(五)—朴素

  最近一直在看機器學習相關的算法,今天我們學習一種基於概率論的分類算法—朴素。本文在對朴素進行簡單介紹之后,通過Python編程加以實現。 一 朴素概述 ...

Thu Sep 03 05:37:00 CST 2015 1 3708
機器學習(一)—朴素

的條件下都是條件獨立的。 1、朴素朴素在哪里?   簡單來說:利用貝葉斯定理求解聯合概率P( ...

Fri May 04 19:45:00 CST 2018 0 3420
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM