原文:sklearn中的朴素貝葉斯算法

sklearn中的朴素貝葉斯分類器 之前理解朴素貝葉斯中的結尾對sklearn中的朴素貝葉斯進行了簡單的介紹. 此處對sklearn中的則對sklearn中的朴素貝葉斯算法進行比較詳細介紹.不過手下還是對朴素貝葉斯本身進行一些補充. 朴素貝葉斯算法 朴素貝葉斯算法的數學基礎都是圍繞貝葉斯定理展開的,因此這一類算法都被稱為朴素貝葉斯算法. 朴素貝葉斯的分類原理是通過對象的先驗概率,利用貝葉斯公式計算 ...

2017-12-17 13:04 0 2358 推薦指數:

查看詳情

朴素算法——實現新聞分類(Sklearn實現)

1、朴素實現新聞分類的步驟 (1)提供文本文件,即數據集下載 (2)准備數據 將數據集划分為訓練集和測試集;使用jieba模塊進行分詞,詞頻統計,停用詞過濾,文本特征提取,將文本數據向量化 停用詞文本stopwords_cn.txt下載 ...

Sat Aug 04 18:10:00 CST 2018 0 3739
sklearn朴素模型及其應用

1.使用朴素模型對iris數據集進行花分類 #高斯分布型 from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB gnb ...

Thu Nov 22 18:53:00 CST 2018 0 727
朴素算法

朴素算法 👉 naive_bayes.MultinomialNB 朴素算法,主要用於分類. 例如:需要對垃圾郵件進行分類 分類思想 , 如何分類 , 分類的評判標准??? 預測文章的類別概率, 預測某個樣本屬於 N個目標分類的相應概率,找出最大 ...

Mon Dec 23 05:43:00 CST 2019 0 229
五、Sklearn朴素分類

參考url: https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html 朴素模型是一組非常簡單快速的分類算法,通常適用於維度非常高的數據集。 因為運行速度快,而且可調參數少,因此非常適合為分類 ...

Fri Mar 20 01:18:00 CST 2020 0 3792
朴素算法原理及實現

朴素算法簡單高效,在處理分類問題上,是應該首先考慮的方法之一。 1、准備知識 分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎,故統稱為分類。 這個定理解決了現實生活里經常遇到的問題:已知某條件概率,如何得到兩個事件交換后的概率,也就是在已知P(A|B)的情況下 ...

Tue May 03 02:34:00 CST 2016 3 32868
朴素算法(Naive Bayes)

1. 前言 說到朴素算法,首先牽扯到的一個概念是判別式和生成式。 判別式:就是直接學習出特征輸出\(Y\)和特征\(X\)之間的關系,如決策函數\(Y=f(X)\),或者從概率論的角度,求出條件分布\(P(Y|X)\)。代表算法有決策樹、KNN、邏輯回歸、支持向量機、隨機條件場 ...

Tue Oct 02 00:45:00 CST 2018 0 5800
朴素算法python實現

朴素是一種十分簡單的分類算法,稱其朴素是因為其思想基礎的簡單性,就文本分類而言,他認為詞袋的兩兩詞之間的關系是相互獨立的,即一個對象的特征向量的每個維度都是互相獨立的。這是朴素理論的思想基礎。 朴素分類的正式定義: 設x={}為一個待分類項,而每個a為x的一個特征 ...

Thu Jan 18 03:02:00 CST 2018 0 3043
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM