1.使用朴素貝葉斯模型對iris數據集進行花分類
#高斯分布型
from sklearn.datasets import load_iris iris = load_iris() from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() #建立高斯分布模型 pred = gnb.fit(iris.data,iris.target) #模型訓練 y_pred = pred.predict(iris.data) #分類預測 print(iris.data.shape[0],(iris.target != y_pred).sum())
運行結果:
#多項式型
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import MultinomialNB gnb = MultinomialNB() #構造多項式分布模型 pred = gnb.fit(iris.data,iris.target) #模型訓練 y_pred = pred.predict(iris.data) #分類預測 print(iris.data.shape[0],(iris.target != y_pred).sum())
運行結果:
#伯努利型
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import BernoulliNB gnb = BernoulliNB() #構造伯努利模型 pred = gnb.fit(iris.data,iris.target) #模型訓練 y_pred = pred.predict(iris.data) #分類預測 print(iris.data.shape[0],(iris.target != y_pred).sum())
運行結果:
2.使用sklearn.model_selection.cross_val_score(),對模型進行驗證。
#高斯模型驗證
from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import cross_val_score gnb = GaussianNB() scores = cross_val_score(gnb,iris.data,iris.target,cv=10) #對高斯模型進行驗證 print("Accuracy:%.3f"%scores.mean())
運行結果:
#多項式模型驗證
from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score gnb = MultinomialNB () scores = cross_val_score(gnb,iris.data,iris.target,cv=10) #對多項式分布模型進行驗證 print("Accuracy:%.3f"%scores.mean())
運行結果:
#伯努利模型驗證
from sklearn.naive_bayes import BernoulliNB from sklearn.model_selection import cross_val_score gnb = BernoulliNB() scores = cross_val_score(gnb,iris.data,iris.target,cv=10) #對伯努利模型進行驗證 print("Accuracy:%.3f"%scores.mean())
運行結果:
3. 垃圾郵件分類
數據准備:
- 用csv讀取郵件數據,分解出郵件類別及郵件內容。
- 對郵件內容進行預處理:去掉長度小於3的詞,去掉沒有語義的詞等
嘗試使用nltk庫:
pip install nltk
import nltk
nltk.download
不成功:就使用詞頻統計的處理方法
(由於下載nltk庫不成功5次,現將源代碼先保存為一份,故沒有運行截圖)
代碼1
import nltk nltk.download() text = '''ham "Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat..."''' import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer def preprocessing(text): #text=text.decode("utf-8") tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word in nltk.word_tokenize(sent)] stops=stopwords.words('english') tokens=[token for token in tokens if token not in stops] tokens=[token.lower() for token in tokens if len(token)>=3] lmtzr= WordNetLemmatizer() tokens=[lmtzr.lemmatizer(token) for token in tokens] preprocessed_text=' '.join(tokens) return preprocessed_text preprocessing(text)
代碼2
import csv file_path=r'F:\Pycharm\11.22\SMSSpamCollectionjsn.txt' sms=open(file_path,'r',encoding='utf-8') sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() print(len(sms_label)) sms_label
代碼3
def preprocessing(text): preprocessing_text = text return preprocessed_text import csv file_path=r'F:\Pycharm\11.22\SMSSpamCollection' sms=open(file_path,'r',encoding='utf-8') sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(preprocessing(line[1])) sms.close() sms_data
代碼4
from sklearn.model_selection import train_test_split x_train, x_text, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.3, random_state=0, stratify=sms_label) x_train x_test from sklearn.naive_bayes import MultinomialNB clf=MultinomialNB().fit(x_train,y_train)
代碼5
x_train
代碼6
x_test