衡量線性回歸法的指標:MSE, RMSE和MAE 舉個栗子: 對於簡單線性回歸,目標是找到a,b 使得盡可能小 其實相當於是對訓練數據集而言的,即 當我們找到a,b后,對於測試數據集而言 ,理所當然,其衡量標准可以是 但問題是,這個衡量標准和m相關。 (當10000個樣本誤差累積 ...
一 MSE RMSE MAE 思路:測試數據集中的點,距離模型的平均距離越小,該模型越精確 注:使用平均距離,而不是所有測試樣本的距離和,因為距離和受樣本數量的影響 公式: MSE:均方誤差 RMSE:均方根誤差 MAE:平均絕對誤差 二 具體實現 自己的代碼 調用scikit learn中的算法 RMSE和MAE的比較 量綱一樣:都是原始數據中y對應的量綱 RMSE gt MAE: 這是一個數學 ...
2018-05-29 11:33 0 26772 推薦指數:
衡量線性回歸法的指標:MSE, RMSE和MAE 舉個栗子: 對於簡單線性回歸,目標是找到a,b 使得盡可能小 其實相當於是對訓練數據集而言的,即 當我們找到a,b后,對於測試數據集而言 ,理所當然,其衡量標准可以是 但問題是,這個衡量標准和m相關。 (當10000個樣本誤差累積 ...
四、衡量回歸的性能指標 1、均方誤差-MSE(Mean Squared Error) 其中y^i表示第 i 個樣本的真實標簽,p^i表示模型對第 i 個樣本的預測標簽。 線性回歸的目的就是讓損失函數最小。那么模型訓練出來了,我們在測試集 ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 這里的y是測試集 ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。 MSE和MAE適用於誤差相對明顯的時候,大的誤差也有比較高的權重,RMSE則是針對誤差不是很明顯的時候;MAE是一個線性的指標,所有個體差異在平均值上均等加權 ...
前言 分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 ...
簡書 原作者 skullfang https://www.jianshu.com/p/9ee85fdad150 https://blog.csdn.net/zrh_CSDN/article/details/81190001 分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE ...
衡量線性回歸法的指標 MSE,RMS,MAE以及評價回歸算法 R Square 衡量線性回歸法的指標 對於分類問題來說,我們將原始數據分成了訓練數據集和測試數據集兩部分,我們使用訓練數據集得到模型以后使用測試數據集進行測試然后和測試數據集自帶的真實的標簽進行對比,那么這樣一來,我們就得 ...
在回歸任務(對連續值的預測)中,常見的評估指標(Metric)有:平均絕對誤差(Mean Absolute Error,MAE)、均方誤差(Mean Square Error,MSE)、均方根誤差(Root Mean Square Error,RMSE)和平均絕對百分比誤差(Mean ...