主成分分析(Principal Component Analysis, PCA )是一種利用線性映射來進行數據降維的方法,並去除數據的相關性; 且最大限度保持原始數據的方差信息 線性映射,去相關性,方差保持 線性映射 \[F = \sum_{i=1}^{p}u_iX_i = u^{T ...
主成分分析(Principal Component Analysis, PCA )是一種利用線性映射來進行數據降維的方法,並去除數據的相關性; 且最大限度保持原始數據的方差信息 線性映射,去相關性,方差保持 線性映射 \[F = \sum_{i=1}^{p}u_iX_i = u^{T ...
這篇文章很不錯:https://blog.csdn.net/u013082989/article/details/53792010 為什么數據處理之前要進行歸一化???(這個一直不明白) ...
主成分分析(PCA)是一種基於變量協方差矩陣對數據進行壓縮降維、去噪的有效方法,PCA的思想是將n維特征映射到k維上(k<n),這k維特征稱為主元,是舊特征的線性組合,這些線性組合最大化樣本方差,盡量使新的k個特征互不相關。 相關知識 介紹一個PCA的教程:A tutorial ...
原文:http://www.cnblogs.com/leonwen/p/5158947.html 該算法由MatLab移植而來(具體參見上一篇博文)。但是最終輸出結果卻和MatLab不 ...
PCA(principle component analysis) 。主成分分析,主要是用來減少數據集 ...
主成分分析的原理 主成分分析是將眾多的變量轉換為少數幾個不相關的綜合變量,同時不影響原來變量反映的信息,實現數學降維。 如何獲取綜合變量? 通過指標加權來定義和計算綜合指標: \[Y_1 = a_{11} \times X_1+a_{12} \times X_2 + ... +a_ ...
學習視頻:【強烈推薦】清風:數學建模算法、編程和寫作培訓的視頻課程以及Matlab 老師講得很詳細,很受用!!! 定義 主成分分析(PrincipalComponentAnalysis,PCA), 主成分分析是一種降維算法,它能將多個指標轉換為少數幾 個主成分,這些主成分是原始變量的線性組合 ...
主成分分析法代碼實現 之間我介紹過主成分份分析法,這里給出代碼實現 運行結果: 上圖的結果分別為特征向量,和主成分所占的方差百分比,可以發現第一個和第二個主成分占的方差百分比比較多,其他幾個特別小,所以這里我們取兩個主成分進行降維,對應上訴代碼。 好的,代碼很簡單,原理 ...