原文:神經網絡的正反向傳播算法推導

正向傳播 . 淺層神經網絡 為簡單起見,先給出如下所示的簡單神經網絡: 該網絡只有一個隱藏層,隱藏層里有四個單元,並且只輸入一個樣本,該樣本表示成一個三維向量,分別為為 x , x 和 x 。網絡的輸出為一個標量,用 hat y 表示。考慮該神經網絡解決的問題是一個二分類的問題,把網絡的輸出解釋為正樣本的概率。比方說輸入的是一張圖片 當然圖片不可能只用三維向量就可以表示,這里只是舉個例子 ,該神 ...

2018-05-24 22:55 0 1181 推薦指數:

查看詳情

神經網絡——反向傳播BP算法公式推導

  在神經網絡中,當我們的網絡層數越來越多時,網絡的參數也越來越多,如何對網絡進行訓練呢?我們需要一種強大的算法,無論網絡多復雜,都能夠有效的進行訓練。在眾多的訓練算法中,其中最傑出的代表就是BP算法,它是至今最成功的神經網絡學習算法。在實際任務中,大部分都是使用的BP算法來進行網絡訓練 ...

Mon Apr 22 06:34:00 CST 2019 0 826
詳解神經網絡的前向傳播反向傳播(從頭推導

詳解神經網絡的前向傳播反向傳播本篇博客是對Michael Nielsen所著的《Neural Network and Deep Learning》第2章內容的解讀,有興趣的朋友可以直接閱讀原文Neural Network and Deep Learning。   對神經網絡有些了解的人 ...

Sun Nov 14 07:22:00 CST 2021 0 179
神經網絡前向傳播反向傳播公式 詳細推導

神經網絡的前向傳播反向傳播公式詳細推導 本篇博客是對Michael Nielsen所著的《Neural Network and Deep Learning》第2章內容的解讀,有興趣的朋友可以直接閱讀原文Neural Network and Deep Learning。   對神經網絡有些了解 ...

Tue Mar 24 08:06:00 CST 2020 0 1508
神經網絡反向傳播算法實現

1 神經網絡模型 以下面神經網絡模型為例,說明神經網絡中正向傳播反向傳播過程及代碼實現 1.1 正向傳播 (1)輸入層神經元\(i_1,i_2\),輸入層到隱藏層處理過程 \[HiddenNeth_1 = w_1i_1+w_2i_2 + b_1 ...

Thu Jul 04 03:13:00 CST 2019 0 1337
神經網絡反向傳播算法(BP)公式推導(超詳細)

反向傳播算法詳細推導 反向傳播(英語:Backpropagation,縮寫為BP)是“誤差反向傳播”的簡稱,是一種與最優化方法(如梯度下降法)結合使用的,用來訓練人工神經網絡的常見方法。該方法對網絡中所有權重計算損失函數的梯度。這個梯度會反饋給最優化方法,用來更新權值以最小化損失函數 ...

Sat Jan 11 01:27:00 CST 2020 3 11654
BP神經網絡:誤差反向傳播算法公式推導圖解

BP神經網絡:誤差反向傳播算法公式推導 開端: BP算法提出 1. BP神經網絡參數符號及激活函數說明 2. 網絡輸出誤差(損失函數)定義 3. 隱藏層與輸出層間的權重更新公式推導 ...

Sun May 30 08:57:00 CST 2021 0 183
神經網絡 誤差逆傳播算法推導 BP算法

  誤差逆傳播算法是迄今最成功的神經網絡學習算法,現實任務中使用神經網絡時,大多使用BP算法進行訓練。   給定訓練集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即輸入示例由\(d\)個屬性描述,輸出\(l ...

Thu Nov 30 06:04:00 CST 2017 0 2486
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM