原文:機器學習類別不平衡處理之欠采樣(undersampling)

類別不平衡就是指分類任務中不同類別的訓練樣例數目差別很大的情況 常用的做法有三種,分別是 .欠采樣, .過采樣, .閾值移動 由於這幾天做的project的target為正值的概率不到 ,且數據量足夠大,所以我采用了欠采樣: 欠采樣,即去除一些反例使得正 反例數目接近,然后再進行學習,基本的算法如下: 因為對應具體的project,所以里面欠采樣的為反例,如果要使用的話需要做一些改動。 欠采樣法若 ...

2018-05-22 20:35 0 9646 推薦指數:

查看詳情

機器學習類別不平衡問題 (3) —— 采樣方法

機器學習類別不平衡問題 (1) —— 各種評估指標 機器學習類別不平衡問題 (2) —— ROC和PR曲線 機器學習類別不平衡問題 (3) —— 采樣方法 完整代碼 前兩篇主要談類別不平衡問題的評估方法,重心放在各類評估指標以及ROC和PR曲線上,只有在明確了這些后 ...

Sun Jul 29 03:12:00 CST 2018 2 10974
機器學習類別不平衡問題 (1) —— 各種評估指標

機器學習類別不平衡問題 (1) —— 各種評估指標 機器學習類別不平衡問題 (2) —— ROC和PR曲線 機器學習類別不平衡問題 (3) —— 采樣方法 完整代碼 在二分類問題中,通常假設正負類別相對均衡,然而實際應用中類別不平衡的問題,如100, 1000, 10000倍 ...

Tue Mar 13 02:47:00 CST 2018 0 4766
機器學習-類別不平衡問題

引言:我們假設有這種情況,訓練數據有反例998個,正例2個,模型是一個永遠將新樣本預測為反例的學習器,就能達到99.8%的精度,這樣顯然是不合理的。 類別不平衡:分類任務中不同類別的訓練樣例數差別很大。   一般我們在訓練模型時,基於樣本分布均勻的假設。從線性分類器的角度 ...

Wed Aug 16 23:56:00 CST 2017 0 5314
機器學習筆記:imblearn之SMOTE算法處理樣本類別不平衡

一、業務背景 日常工作、比賽的分類問題中常遇到類別型的因變量存在嚴重的偏倚,即類別之間的比例嚴重失調。 樣本量差距過大會導致建模效果偏差。 例如邏輯回歸不適合處理類別不平衡問題,會傾向於將樣本判定為大多數類別,雖然能達到很高的准確率,但是很低的召回率。 出現樣本不均衡場景主要有 ...

Tue Mar 08 00:47:00 CST 2022 0 6666
機器學習:如何處理數據中的「類別不平衡」?

機器學習 jqbxx.com -機器學習好網站 機器學習中常常會遇到數據的類別不平衡(class imbalance),也叫數據偏斜(class skew)。以常見的二分類問題為例,我們希望預測病人是否得了某種罕見疾病。但在歷史數據中,陽性的比例可能很低(如百分之0.1)。在這 ...

Mon Feb 05 19:14:00 CST 2018 0 1798
從重采樣到數據合成:如何處理機器學習中的不平衡分類問題?

從重采樣到數據合成:如何處理機器學習中的不平衡分類問題? 轉載自【機器之心】http://www.jiqizhixin.com/article/2499本文作者為來自 KPMG 的數據分析顧問 Upasana Mukherjee 如果你研究過一點機器學習和數據科學,你肯定遇到過不平衡的類分布 ...

Mon May 01 00:29:00 CST 2017 0 1812
機器學習樣本不平衡處理

樣本不平衡往往會導致以下問題: 對比例小的樣本造成過擬合,也就是說預測偏向樣本數較多的分類。這樣就會大大降低模型的范化能力。往往accuracy(准確率)很高,但auc很低。 針對樣本的不平衡問題,有以下幾種常見的解決思路: 搜集更多的數據 改變評判指標 對數據進行采樣 ...

Mon Jan 06 22:37:00 CST 2020 0 794
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM