原文:梯度下降法和牛頓法的總結與比較

機器學習的本質是建立優化模型,通過優化方法,不斷迭代參數向量,找到使目標函數最優的參數向量。最終建立模型 通常用到的優化方法:梯度下降方法 牛頓法 擬牛頓法等。這些優化方法的本質就是在更新參數。 一 梯度下降法 梯度下降的思想 通過搜索方向和步長來對參數進行更新。其中搜索方向是目標函數在當前位置的負梯度方向。因為這個方向是最快的下降方向。步長確定了沿着這個搜索方向下降的大小。 迭代的過程就像是在不 ...

2018-05-08 19:36 3 10861 推薦指數:

查看詳情

梯度下降法牛頓比較

參考知乎:https://www.zhihu.com/question/19723347 這篇博文講牛頓講的非常好:http://blog.csdn.net/itplus/article/details/21896453 梯度下降法 ...

Wed Oct 12 05:49:00 CST 2016 0 2053
機器學習中梯度下降法牛頓比較

在機器學習的優化問題中,梯度下降法牛頓是常用的兩種凸函數求極值的方法,他們都是為了求得目標函數的近似解。在邏輯斯蒂回歸模型的參數求解中,一般用改良的梯度下降法,也可以用牛頓。由於兩種方法有些相似,我特地拿來簡單地對比一下。下面的內容需要讀者之前熟悉兩種算法。 梯度下降法 梯度下降法用來 ...

Fri Sep 28 00:40:00 CST 2018 0 3357
梯度下降法牛頓的解釋與對比

1 梯度下降法 我們使用梯度下降法是為了求目標函數最小值f(X)對應的X,那么我們怎么求最小值點x呢?注意我們的X不一定是一維的,可以是多維的,是一個向量。我們先把f(x)進行泰勒展開: 這里的α是學習速率,是個標量,代表X變化的幅度;d表示的是單位步長,是一個矢量,有方向,單位長度 ...

Fri Dec 19 04:32:00 CST 2014 0 17254
梯度下降法牛頓,擬牛頓區別

梯度下降法是沿着梯度下降的算法,該算法的收斂速度受梯度大小影響非常大,當梯度小時算法收斂速度非常慢。 牛頓是通過把目標函數做二階泰勒展開,通過求解這個近似方程來得到迭代公式,牛頓的迭代公式中用到了二階導數來做指導,所以牛頓的收斂速度很快,但是由於要求二階導,所以牛頓的時間復雜度非常高 ...

Tue Jun 25 06:10:00 CST 2019 0 627
梯度下降法牛頓、高斯牛頓、LM算法

假設有一個可導函數f(x),我們的目標函數是求解最小值$min\frac{1}{2}f(x)^{2}$,假設x給定的初始值是$x_0$ 1、梯度下降法 將f(x)在$x_0$處進行1階泰勒級數展開:$f(x)=f(x_0)+f(x_0)^{'}(x-x_0)$。 則我們的目標函數變成 ...

Mon Feb 25 04:05:00 CST 2019 0 816
最優化方法課程總結三-- 最速下降法牛頓和線性共軛梯度

故事繼續從選定方向的選定步長講起 首先是下降最快的方向 -- 負梯度方向衍生出來的最速下降法 最速下降法 顧名思義,選擇最快下降。包含兩層意思:選擇下降最快的方向,在這一方向上尋找最好的步長。到達后在下一個點重復該步驟。定方向 選步長 前進... 優化問題的模型:\(min f ...

Thu Dec 30 04:47:00 CST 2021 0 850
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM