卷積神經網絡這個詞,應該在你開始學習人工智能不久后就聽過了,那究竟什么叫卷積神經網絡,今天我們就聊一聊這個問題。 不用思考,左右兩張圖就是兩只可愛的小狗狗,但是兩張圖中小狗狗所處的位置是不同的,左側圖片小狗在圖片的左側,右側圖片小狗在圖片的右下方,這樣如果去用圖片特征識別出來的結果,兩張圖 ...
傳統的NMS NMS,非極大值抑制,在很多計算機視覺問題中有着重要應用,尤其是目標檢測領域。 以人臉檢測為例,通常的流程為 步: 通過滑動窗口或者其它的object proposals方法產生大量的候選窗口 用訓練好的分類器對候選窗口進行分類,該過程可以看做是一個打分的過程 使用NMS對上面的檢測結果進行融合 因為一個目標可能被檢測出多個窗口,而我們只希望保留一個 。 如下圖是 分類檢測之后的結 ...
2018-05-08 01:11 0 1916 推薦指數:
卷積神經網絡這個詞,應該在你開始學習人工智能不久后就聽過了,那究竟什么叫卷積神經網絡,今天我們就聊一聊這個問題。 不用思考,左右兩張圖就是兩只可愛的小狗狗,但是兩張圖中小狗狗所處的位置是不同的,左側圖片小狗在圖片的左側,右側圖片小狗在圖片的右下方,這樣如果去用圖片特征識別出來的結果,兩張圖 ...
一、學習心得及問題 心得 趙亮:對於卷積神經網絡的定義有了初步的理解,卷積神經網絡在圖片分類、檢索、分割、檢測,人臉識別等領域有廣泛的應用。使用局部關聯、參數共享的方式解決了全連接網絡過擬合的缺點。同時也了解了卷積的具體含義,對AlexNet、ZFNet、VGG等典型的神經網絡結構有了初步 ...
在上篇中介紹的輸入層與隱含層的連接稱為全連接,如果輸入數據是小塊圖像,比如8×8,那這種方法是可行的,但是如果輸入圖像是96×96,假設隱含層神經元100個,那么就有一百萬個(96×96×100)參數需要學習,向前或向后傳播計算時計算時間也會慢很多。 解決這類問題的一種簡單 ...
卷積神經網絡 完整版:https://git.oschina.net/wjiang/Machine-Learning 卷積網絡簡介 卷積網絡(leCun,1989),也被稱為卷積神經網絡或CNN, 它是處理數據的一個特殊的神經網絡,它包含一個已知的類網格的拓撲結構。例子 ...
先簡單理解一下卷積這個東西。 (以下轉自https://blog.csdn.net/bitcarmanlee/article/details/54729807 知乎是個好東西) 1.知乎上排名最高的解釋 首先選取知乎上對卷積物理意義解答排名最靠前的回答。 不推薦用“反轉/翻轉/反褶/對稱 ...
的全部(全像素全連接),並且只是簡單的映射,並沒有對物體進行抽象處理。 誰對誰錯呢?卷積神經網絡(C ...
一、前言 這篇卷積神經網絡是前面介紹的多層神經網絡的進一步深入,它將深度學習的思想引入到了神經網絡當中,通過卷積運算來由淺入深的提取圖像的不同層次的特征,而利用神經網絡的訓練過程讓整個網絡自動調節卷積核的參數,從而無監督的產生了最適合的分類特征。這個概括可能有點抽象,我盡量在下面描述細致一些 ...
卷積神經網絡CNN 作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/ 卷積神經網絡(Convolutional Neural Network,CNN 或ConvNet)是一種具有局部連接、權重共享等特性的深層前饋神經網絡。卷積 ...