原創博文,轉載請注明出處! 包裹式特征選擇法的特征選擇過程與學習器相關,使用學習器的性能作為特征選擇的評價准則,選擇最有利於學習器性能的特征子集。常用的包裹式特征選擇法有遞歸特征消除法RFE。 # 遞歸特征消除法 遞歸特征消除法RFE 遞歸特征消除法的英文全名 ...
原創博文,轉載請注明出處 嵌入式特征選擇法使用機器學習模型進行特征選擇。特征選擇過程與學習器相關,特征選擇過程與學習器訓練過程融合,在學習器訓練過程中自動進行特征選擇。 通過L 正則化來選擇特征 sklearn在feature selection模塊中集成的模型SelectFromModel實現了嵌入式特征選擇,SelectFromModel模型通過sklearn內置的機器學習模型提供的特征重要性 ...
2018-05-01 23:05 0 3281 推薦指數:
原創博文,轉載請注明出處! 包裹式特征選擇法的特征選擇過程與學習器相關,使用學習器的性能作為特征選擇的評價准則,選擇最有利於學習器性能的特征子集。常用的包裹式特征選擇法有遞歸特征消除法RFE。 # 遞歸特征消除法 遞歸特征消除法RFE 遞歸特征消除法的英文全名 ...
# 過濾式特征選擇法的原理 使用發散性或相關性指標對各個特征進行評分,選擇分數大於閾值的特征或者選擇前K個分數最大的特征。具體來說,計算每個特征的發散性,移除發散性小於閾值的特征/選擇前k個分數最大的特征;計算每個特征與標簽的相關性,移除相關性小於閾值的特征/選擇前k個分數 ...
使用方差選擇法,先要計算各個特征的方差,然后根據閾值,選擇方差大於閾值的特征。如果一個特征不發散,例如方差接近於0,也就是說樣本在這個特征上基本上沒有差異,這個特征對於樣本的區分並沒有什么用。 方差過濾可以使用在巨大的稀疏矩陣中,稀疏矩陣中可以考慮將方差的過濾閾值設置為0,這樣就會 ...
3.2 Embedded嵌入法 嵌入法是一種讓算法自己決定使用哪些特征的方法,即特征選擇和算法訓練同時進行。在使用嵌入法時,我們先使用某些機器學習的算法和模型進行訓練,得到各個特征的權值系數,根據權值系數從大到小選擇特征。這些權值系數往往代表了特征對於模型的某種貢獻或某種重要性,比如決策樹和樹 ...
一、正則化 1.L1/Lasso L1正則方法具有稀疏解的特性,因此天然具備特征選擇的特性,但是要注意,L1沒有選到的特征不代表不重要,原因是兩個具有高相關性的特征可能只保留了一個,如果要確定哪個特征重要應再通過L2正則方法交叉檢驗。 舉例:下面的例子在波士頓房價數據上運行了Lasso ...
官網的一個例子(需要自己給出計算公式、和k值) 參數 1、score_func ...
概述 針對某種數據,通過一定的特征提取手段,或者記錄觀測到的特征,往往得到的是一組特征,但其中可能存在很多特征與當前要解決的問題並不密切等問題。另一方面,由於特征過多,在處理中會帶來計算量大、泛化能力差等問題,即所謂的“維數災難”。 特征選擇便是從給定的特征集合中選出相關特征子集的過程 ...
1、介紹 Max-Relevance and Min-Redundancy,最大相關—最小冗余。最大相關性保證特征和類別的相關性最大;最小冗余性確保特征之間的冗余性最小。它不僅考慮到了特征和標注之間的相關性,還考慮到了特征和特征之間的相關性。度量標准使用的是互信息(Mutual ...