一、簡介 貝葉斯用於描述兩個條件概率之間的關系,一般,P(A|B)與P(B|A)的結果是不一樣的,貝葉斯則是描述P(A|B)和P(B|A)之間的特定的關系。 公式:\[P({A_{\rm{i}}}|B) = \frac{{P(B|{A_{\rm{i}}})P({A_i})}}{{\sum ...
自我理解貝葉斯算法也就是通過概率來判斷C是屬於A類還是B類,下面是具體代碼 python . 測試通過 文字流程解釋一波 加載訓練數據和訓練數據對應的類別 生成詞匯集,就是所有訓練數據的並集 生成訓練數據的向量集,也就是只包含 和 的向量集 計算訓練數據的各個概率 加載測試數據 生成測試數據的向量集 測試數據向量 訓練數據的概率 最后求和 得出測試數據的所屬類別 具體代碼實現 代碼實現 代碼實現 ...
2018-04-25 10:02 0 1201 推薦指數:
一、簡介 貝葉斯用於描述兩個條件概率之間的關系,一般,P(A|B)與P(B|A)的結果是不一樣的,貝葉斯則是描述P(A|B)和P(B|A)之間的特定的關系。 公式:\[P({A_{\rm{i}}}|B) = \frac{{P(B|{A_{\rm{i}}})P({A_i})}}{{\sum ...
簡介 學過概率理論的人都知道條件概率的公式:P(AB)=P(A)P(B|A)=P(B)P(A|B);即事件A和事件B同時發生的概率等於在發生A的條件下B發生的概率乘以A的概率。由條件概率公式推導出貝葉斯公式:P(B|A)=P(A|B)P(B)/P(A);即,已知P(A|B),P(A)和P(B ...
簡介 學過概率理論的人都知道條件概率的公式:P(AB)=P(A)P(B|A)=P(B)P(A|B);即事件A和事件B同時發生的概率等於在發生A的條件下B發生的概率乘以A的概率。由條件概率公式推導出貝葉斯公式:P(B|A)=P(A|B)P(B)/P(A);即,已知P(A|B),P(A)和P(B ...
朴素貝葉斯算法要理解一下基礎: 【朴素:特征條件獨立 貝葉斯:基於貝葉斯定理】 1朴素貝葉斯的概念【聯合概率分布、先驗概率、 條件概率**、全概率公式】【條件獨立性假設、】 極大似然估計 2優缺點 【優點: 分類效率穩定;對缺失數據不敏感,算法比較簡單 ...
朴素貝葉斯是一種十分簡單的分類算法,稱其朴素是因為其思想基礎的簡單性,就文本分類而言,他認為詞袋中的兩兩詞之間的關系是相互獨立的,即一個對象的特征向量中的每個維度都是互相獨立的。這是朴素貝葉斯理論的思想基礎。 朴素貝葉斯分類的正式定義: 設x={}為一個待分類項,而每個a為x的一個特征 ...
朴素貝葉斯 算法優缺點 優點:在數據較少的情況下依然有效,可以處理多類別問題 缺點:對輸入數據的准備方式敏感 適用數據類型:標稱型數據 算法思想: 朴素貝葉斯比如我們想判斷一個郵件是不是垃圾郵件,那么我們知道的是這個郵件中的詞 ...
貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎,故統稱為貝葉斯分類。而朴素朴素貝葉斯分類是貝葉斯分類中最簡單,也是常見的一種分類方法。這篇文章我盡可能用直白的話語總結一下我們學習會上講到的朴素貝葉斯分類算法,希望有利於他人理解。 分類問題綜述 ...
朴素貝葉斯算法 👉 naive_bayes.MultinomialNB 朴素貝葉斯算法,主要用於分類. 例如:需要對垃圾郵件進行分類 分類思想 , 如何分類 , 分類的評判標准??? 預測文章的類別概率, 預測某個樣本屬於 N個目標分類的相應概率,找出最大 ...