擴展卡爾曼濾波的狀態方程和觀測方程可以是非線性的。在一般情況下,無法確定過程噪聲、測量噪聲與方程的函數關系,因此可以簡化為加性噪聲: EKF relies on a linearisation of the evolution and observation ...
卡爾曼濾波是一種高效率的遞歸濾波器 自回歸濾波器 , 它能夠從一系列的不完全包含噪聲的測量 英文:measurement 中,估計動態系統的狀態,然而簡單的卡爾曼濾波必須應用在符合高斯分布的系統中。 百度百科是這樣說的,也就是說卡爾曼濾波第一是遞歸濾波,其次KF用於線性系統。 但經過研究和改進,出現了很多卡爾曼,如EKF extended kalman filter 擴展卡爾曼,UKF Unsce ...
2018-02-27 10:29 0 31519 推薦指數:
擴展卡爾曼濾波的狀態方程和觀測方程可以是非線性的。在一般情況下,無法確定過程噪聲、測量噪聲與方程的函數關系,因此可以簡化為加性噪聲: EKF relies on a linearisation of the evolution and observation ...
參考:https://blog.csdn.net/young_gy/article/details/78468153 Extended Kalman Filter(擴展卡爾曼濾波)是卡爾曼濾波的非線性版本。在狀態轉移方程確定的情況下,EKF已經成為了非線性系統狀態估計的事實標准。本文將簡要介紹 ...
簡介 已經歷經了半個世紀的卡爾曼濾波至今仍然是研究的熱點,相關的文章不斷被發表。其中許多文章是關於卡爾曼濾波器的新應用,但也不乏改善和擴展濾波器算法的研究。而對算法的研究多着重於將卡爾曼濾波應用於非線性系統。 為什么學界要這么熱衷於將卡爾曼濾波器用於非線性系統呢?因為卡爾曼濾波 ...
這一章將介紹卡爾曼濾波、擴展卡爾曼濾波以及無跡卡爾曼濾波,並從貝葉斯濾波的角度來進行分析並完成數學推導。如果您對貝葉斯濾波不了解,可以查閱相關書籍或閱讀 【概率機器人 2 遞歸狀態估計】。 這三種濾波方式都假設狀態變量 $\mathbf{x}_t$ 的置信度 $\mathrm{bel ...
卡爾曼濾波法 卡爾曼濾波算法是一種利用線性系統狀態方程,通過系統輸入輸出觀測數據,對系統狀態進行最優估計的算法,是一種最優化自回歸數據處理算法。 通俗地講,對系統 \(k-1\) 時刻的狀態,我們有兩種途徑來獲得系統 \(k\) 時刻的狀態。一種是根據常識或者系統以往的狀態表現來預測 \(k ...
1.用途 現實是我們的處理和測量模型都是非線性的,結果就是一個不規則分布,KF能夠使用的前提就是所處理的狀態是滿足高斯分布的,為了解決這個問題,EKF是尋找一個線性函數來近似這個非線性函數,而UKF就是去找一個與真實分布近似的高斯分布。 KF處理線性模型: EKF ...
Google Cardboard的九軸融合算法 ——基於李群的擴展卡爾曼濾波 極品巧克力 前言 九軸融合算法是指通過融合IMU中的加速度計(三軸)、陀螺儀(三軸)、磁場計(三軸),來獲取物體姿態的方法。它是開發VR頭顯中的一個至關重要的部分。VR頭顯必須要實時准確地獲取 ...