前言 我們在訓練網絡的時候經常會設置 batch_size,這個 batch_size 究竟是做什么用的,一萬張圖的數據集,應該設置為多大呢,設置為 1、10、100 或者是 10000 究竟有什么區別呢? 批量梯度下降(Batch Gradient Descent,BGD) 梯度下降 ...
線性回歸 首先要明白什么是回歸。回歸的目的是通過幾個已知數據來預測另一個數值型數據的目標值。 假設特征和結果滿足線性關系,即滿足一個計算公式h x ,這個公式的自變量就是已知的數據x,函數值h x 就是要預測的目標值。這一計算公式稱為回歸方程,得到這個方程的過程就稱為回歸。 假設房子的房屋面積和卧室數量為自變量x,用x 表示房屋面積,x 表示卧室數量 房屋的交易價格為因變量y,我們用h x 來表示 ...
2018-02-20 16:55 0 20742 推薦指數:
前言 我們在訓練網絡的時候經常會設置 batch_size,這個 batch_size 究竟是做什么用的,一萬張圖的數據集,應該設置為多大呢,設置為 1、10、100 或者是 10000 究竟有什么區別呢? 批量梯度下降(Batch Gradient Descent,BGD) 梯度下降 ...
https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作為機器學習中較常使用的優化算法,其有着三種不同的形式:批量梯度下降(Batch Gradient Descent)、隨機梯度下降(Stochastic Gradient Descent ...
梯度下降法作為機器學習中較常使用的優化算法,其有着三種不同的形式:批量梯度下降(Batch Gradient Descent)、隨機梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降 ...
中文文檔: http://sklearn.apachecn.org/cn/0.19.0/modules/sgd.html 英文文檔: http://sklearn.apachecn.org/en/0.19.0/modules/sgd.html 官方文檔: http ...
1. 損失函數 在線性回歸分析中,假設我們的線性回歸模型為: 樣本對應的正確數值為: 現在假設判別函數的系數都找出來了,那么通過判別函數G(x),我們可以預測是樣本x對的值為。那這個跟 ...
不多說,直接上干貨! 回歸與梯度下降 回歸在數學上來說是給定一個點集,能夠用一條曲線去擬合之,如果這個曲線是一條直線,那就被稱為線性回歸,如果曲線是一條二次曲線,就被稱為二次回歸,回歸還有很多的變種,如本地加權回歸、邏輯回歸,等等。 用一個 ...
梯度下降算法是通過沿着目標函數J(θ)參數θ∈R的梯度(一階導數)相反方向−∇θJ(θ)來不斷更新模型參數來到達目標函數的極小值點(收斂),更新步長為η。有三種梯度下降算法框架,它們不同之處在於每次學習(更新模型參數)使用的樣本個數,每次更新使用不同的樣本會導致每次學習的准確性和學習時間 ...