完整版可關注公眾號:大數據技術宅獲取 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,基於密度的有噪應用中的空間聚類)是一種簡單,卻又在處理時空數據時表現不錯的算法,借最近正好有看,這里整理下。不同於 ...
一.前述 密度聚類是一種能降噪的算法。很多時候用在聚類形狀不規則的情況下。 二.相關概念 先看些抽象的概念 官方定義 : .:對象O的是與O為中心,為半徑的空間,參數,是用戶指定每個對象的領域半徑值。 .MinPts 領域密度閥值 :對象的的對象數量。 .核心對象:如果對象O的對象數量至少包含MinPts個對象,則該對象是核心對象。 .直接密度可達:如果對象p在核心對象q的內,則p是從q直接密度可 ...
2018-01-19 20:00 0 2501 推薦指數:
完整版可關注公眾號:大數據技術宅獲取 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,基於密度的有噪應用中的空間聚類)是一種簡單,卻又在處理時空數據時表現不錯的算法,借最近正好有看,這里整理下。不同於 ...
一、算法思想: DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一個比較有代表性的基於密度的聚類算法。與划分和層次聚類方法不同,它將簇定義為密度相連的點的最大集合,能夠把具有 ...
一、基於密度的聚類算法的概述 最近在Science上的一篇基於密度的聚類算法《Clustering by fast search and find of density peaks》引起了大家的關注(在我的博文“ 論文中的機器學習算法——基於密度峰值的聚類算法”中也進行了中文的描述 ...
1、概述 DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪聲的基於密度的聚類方法)是一種很典型的密度聚類算法.和K-Means,BIRCH這些一般只適用於凸樣本集的聚類相比,DBSCAN既可以適用於凸 ...
本文介紹無監督學習算法,無監督學習是在樣本的標簽未知的情況下,根據樣本的內在規律對樣本進行分類,常見的無監督學習就是聚類算法。 在監督學習中我們常根據模型的誤差來衡量模型的好壞,通過優化損失函數來改善模型。而在聚類算法中是怎么來度量模型的好壞呢?聚類算法模型的性能度量大致有兩類 ...
聚類算法 任務:將數據集中的樣本划分成若干個通常不相交的子集,對特征空間的一種划分。 性能度量:類內相似度高,類間相似度低。兩大類:1.有參考標簽,外部指標;2.無參照,內部指標。 距離計算:非負性,同一性(與自身距離為0),對稱性,直遞性(三角不等式)。包括歐式距離(二范數 ...
公式實在不好敲呀,我拍了我筆記上的公式部分。原諒自己小學生的字體(太丑了)。 聚類屬於無監督學習方法,典型的無監督學習方法還有密度估計和異常檢測。 聚類任務:將數據集中的樣本划分為若干個不相交的子集,每個子集為一個類。 性能指標(有效性指標):類內相似度高,類間相似度低。 性能度量 ...
一、前述 指數平滑法對時間序列上連續的值之間的相關性沒有要求。但是,如果你想使用指數平滑法計算出預測區間, 那么預測誤差必須是不相關的, 且必須是服從零均值、 方差不變的正態分布。即使指數平滑法對時 ...