介紹 DeepLearning課程總共五大章節,該系列筆記將按照課程安排進行記錄。 另外第一章的前兩周的課程在之前的Andrew Ng機器學習課程筆記(博客園)&Andrew Ng機器學習課程筆記(CSDN)系列筆記中都有提到,所以這里不再贅述。 1、神經網絡概要 ...
一 目標定位 這一小節視頻主要介紹了我們在實現目標定位時標簽該如何定義。 上圖左下角給出了損失函數的計算公式 這里使用的是平方差 如圖示,加入我們需要定位出圖像中是否有pedestrian,car,motorcycles。注意在這里我們假設圖像中只肯呢個存在這三者中的一種或者都不存在,所以共有四種可能。 P c 表示有三者中的一種 C 表示有pedestrian,反之沒有 C 表示有car C 表 ...
2018-01-17 20:41 2 2949 推薦指數:
介紹 DeepLearning課程總共五大章節,該系列筆記將按照課程安排進行記錄。 另外第一章的前兩周的課程在之前的Andrew Ng機器學習課程筆記(博客園)&Andrew Ng機器學習課程筆記(CSDN)系列筆記中都有提到,所以這里不再贅述。 1、神經網絡概要 ...
一、計算機視覺 如圖示,之前課程中介紹的都是64* 64 *3的圖像,而一旦圖像質量增加,例如變成1000 * 1000 * 3的時候那么此時的神經網絡的計算量會巨大,顯然這不現實。所以需要引入其他的方法來解決這個問題。 二、邊緣檢測示例 邊緣檢測可以是垂直邊緣檢測,也可以是水平邊緣檢測 ...
一、為什么要進行實例探究? 通過他人的實例可以更好的理解如何構建卷積神經網絡,本周課程主要會介紹如下網絡 LeNet-5 AlexNet VGG ResNet (有152層) Inception 二、經典網絡 1.LeNet-5 該網絡主要針對灰度圖像訓練 ...
。 假如我們公司只有4個員工,按照之前的思路我們訓練的神經網絡模型應該如下: 如圖示,輸 ...
一、深層神經網絡 深層神經網絡的符號與淺層的不同,記錄如下: 用\(L\)表示層數,該神經網絡\(L=4\) \(n^{[l]}\)表示第\(l\)層的神經元的數量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l ...
一、調試處理 week2中提到有如下的超參數: α hidden units mini-batch size β layers learning rate decay \(β_1,β_2,ε\) 顏色表示重要性,以及調試過程中可能會需要修改的程度 ...
作者:szx_spark 1. 經典網絡 LeNet-5 AlexNet VGG Ng介紹了上述三個在計算機視覺中的經典網絡。網絡深度逐漸增加,訓練的參數數量也驟增。AlexNet大約6000萬參數,VGG大約上億參數。 從中我們可以學習 ...
作者:szx_spark 1. Padding 在卷積操作中,過濾器(又稱核)的大小通常為奇數,如3x3,5x5。這樣的好處有兩點: 在特征圖(二維卷積)中就會存在一個中心像素點。有一個中心像素點會十分方便,便於指出過濾器的位置。 在沒有padding的情況下,經過卷積操作 ...