是否在人類監督下進行訓練(監督,無監督和強化學習) 在機器學習中,無監督學習就是聚類,事先不知道樣本的類別,通過某種辦法,把相似的樣本放在一起歸位一類;而監督型學習就是有訓練樣本,帶有屬性標簽,也可以理解成樣本有輸入有輸出。 所有的回歸算法和分類算法都屬於監督學習。回歸和分類的算法區別在於輸出 ...
目前隨着人工智能的發展,機器學習的應用領域日益寬泛,各種機器學習適應不同的應用場景,而機器學習差別的關鍵點之一就在於所使用算法的不同,今天就為大家介紹 種主要的分類算法。 朴素貝葉斯分類 朴素貝葉斯分類是基於貝葉斯定理與特征條件獨立假設的分類方法,發源於古典數學理論,擁有穩定的數學基礎和分類效率。它是一種十分簡單的分類算法,當然簡單並不一定不好用。通過對給出的待分類項求解各項類別的出現概率大小,來 ...
2017-12-19 15:01 0 3639 推薦指數:
是否在人類監督下進行訓練(監督,無監督和強化學習) 在機器學習中,無監督學習就是聚類,事先不知道樣本的類別,通過某種辦法,把相似的樣本放在一起歸位一類;而監督型學習就是有訓練樣本,帶有屬性標簽,也可以理解成樣本有輸入有輸出。 所有的回歸算法和分類算法都屬於監督學習。回歸和分類的算法區別在於輸出 ...
機器學習算法可以分為兩大類:監督學習與非監督學習。數據集構成:‘監督學習:特征值+目標值;非監督學習:特征值’。 監督學習: 分類:K-近鄰算法、貝葉斯分類、決策樹與隨機森林、邏輯回歸、神經網絡 回歸:線性回歸、嶺回歸 標注:隱馬爾可夫模型 注:分類:目標值離散型數據;回歸 ...
轉自@王萌,有少許修改。 機器學習起源於人工智能,可以賦予計算機以傳統編程所無法實現的能力,比如飛行器的自動駕駛、人臉識別、計算機視覺和數據挖掘等。 機器學習的算法很多。很多時候困惑人們的是,很多算法是一類算法,而有些算法又是從其他算法中延伸出來的。這里,我們從兩個方面來給大家介紹,第一個方面 ...
//2019.08.14#機器學習算法評價分類結果1、機器學習算法的評價指標一般有很多種,對於回歸問題一般有MAE,MSE,AMSE等指標,而對於分類算法的評價指標則更多:准確度score,混淆矩陣、精准率、召回率以及ROC曲線、PR曲線等。2、對於分類算法只用准確率的評價指標是不夠 ...
機器學習無疑是當前數據分析領域的一個熱點內容。很多人在平時的工作中都或多或少會用到機器學習的算法。本文為您總結一下常見的機器學習算法,以供您在工作和學習中參考。 機器學習的算法很多。很多時候困惑人們都是,很多算法是一類算法,而有些算法又是從其他算法中延伸出來的。這里,我們從兩個方面來給大家介紹 ...
機器學習的分類與主要算法對比 http://blog.csdn.net/sinat_27554409/article/details/72823984 重要引用:Andrew Ng Courera Machine Learning;從機器學習談起;關於機器學習的討論;機器學習常見算法分類匯總 ...
有關智能優化算法: 參考學習: https://blog.csdn.net/qq_25225255/article/details/82355211 https://blog.csdn.net/sinat_32547403/article/details/73008127 ...