前言: 上一次寫了關於PCA與LDA的文章,PCA的實現一般有兩種,一種是用特征值分解去實現的,一種是用奇異值分解去實現的。在上篇文章中便是基於特征值分解的一種解釋。特征值和奇異值在大部分人的印象中,往往是停留在純粹的數學計算中。而且線性代數或者矩陣論里面,也很少講 ...
奇異值分解 任何實矩陣 textbf A in mathbb R m times n 都可以分解為 textbf A textbf U Sigma textbf V T , 其中, textbf U in mathbb R m times m 和 textbf V in mathbb R n times n 分別為滿足 textbf U T textbf U textbf I 以及 textbf ...
2017-12-07 16:53 0 5804 推薦指數:
前言: 上一次寫了關於PCA與LDA的文章,PCA的實現一般有兩種,一種是用特征值分解去實現的,一種是用奇異值分解去實現的。在上篇文章中便是基於特征值分解的一種解釋。特征值和奇異值在大部分人的印象中,往往是停留在純粹的數學計算中。而且線性代數或者矩陣論里面,也很少講 ...
矩陣的奇異值分解(Singular Value Decomposition,SVD)是數值計算中的精彩之處,在其它數學領域和機器學習領域得到了廣泛的應用,如矩陣的廣義逆,主分成分析(PCA),自然語言處理(NLP)中的潛在語義索引(Latent Semantic Indexing),推薦算法 ...
轉:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 前言: PCA的實現一般有兩種,一種是用特征值分解去實現的,一種是用奇異值分解去實現的。在上篇文章中便是 ...
奇異值分解(singular value decomposition, SVD)是一種矩陣因子分解方法,是線性代數的概念,但在統計學習中被廣泛使用,成為其重要工具。 定義 (奇異值分解)矩陣的奇異值分解是指, 將一個非零的mxn實矩陣A, A∈Rmxn,表示為以下三個實矩陣乘積形式的運算,即進行 ...
酉空間(也稱:U空間,復內積空間):定義了復數域上的內積方式的線性空間叫做酉空間(相乘變成共軛相乘) 酉矩陣:歐氏空間(實線性空間)的正交陣的復空間的對應版本,他只是《線性代數》中的正交陣的一個推廣。 相似矩陣:,酉相似:P是酉矩陣 厄米特矩陣(Hermitian Matrix,又譯作 ...
斜風細雨作小寒,淡煙疏柳媚晴灘。入淮清洛漸漫漫。 雪沫乳花浮午盞,蓼茸蒿筍試春盤。人間有味是清歡。 ---- 蘇軾 更多精彩內容請關注微信公眾號 “優化與算法” 低秩矩陣恢復是稀疏向量恢復的拓展,二者具有很多可以類比的性質。首先,稀疏是相對於向量而言,稀疏性體現在待恢復向量中非零元 ...
矩陣SVD 奇異值分解(Singular Value Decomposition)是一種重要的矩陣分解方法,可以看做是對方陣在任意矩陣上的推廣。Singular的意思是突出的,奇特的,非凡的,按照這樣的翻譯似乎也可以叫做矩陣的優值分解。 假設矩陣A是一個m*n階的實矩陣,則存在一個分解 ...
算法的完整實現代碼我已經上傳到了GitHub倉庫:NumericalAnalysis-Python(包括其它數值分析算法),感興趣的童鞋可以前往查看。 1 奇異值分解(SVD) 1.1 奇異值分解 已知矩陣\(\boldsymbol{A} \in \R^{m \times n ...