原文:CNN tflearn處理mnist圖像識別代碼解說——conv_2d參數解釋,整個網絡的訓練,主要就是為了學那個卷積核啊。

官方參數解釋: Convolution D tflearn.layers.conv.conv d incoming, nb filter, filter size, strides , padding same , activation linear , bias True, weights init uniform scaling , bias init zeros , regularizer ...

2017-11-28 10:16 0 4231 推薦指數:

查看詳情

使用卷積神經網絡CNN訓練識別mnist

算的的上是自己搭建的第一個卷積神經網絡網絡結構比較簡單。 輸入為單通道的mnist數據集。它是一張28*28,包含784個特征值的圖片 我們第一層輸入,使用5*5的卷積核進行卷積,輸出32張特征圖,然后使用2*2的池化進行池化 輸出14*14的圖片 第二層 使用5*5的卷積和進行卷積 ...

Sun Aug 26 00:38:00 CST 2018 0 2471
CNN 卷積神經網絡 手寫數字 圖像識別 (深度學習)

@ 目錄 ✌ 卷積神經網絡手寫數字圖像識別 1、✌ 導入相關庫 2、✌ 導入手寫數據集 3、✌ 定義數據包裝器 4、✌ 查看數據維度 5、✌ 定義卷積網絡層 6、✌ 定義模型與損失函數、優化器 7、✌ 訓練 ...

Wed Apr 28 05:11:00 CST 2021 0 257
卷積神經網絡圖像識別

卷積神經網絡圖像識別 我們介紹了人工神經網絡,以及它的訓練和使用。我們用它來識別了手寫數字,然而,這種結構的網絡對於圖像識別任務來說並不是很合適。本文將要介紹一種更適合圖像、語音識別任務的神經網絡結構——卷積神經網絡(Convolutional Neural Network, CNN)。說卷積 ...

Thu Jan 17 16:26:00 CST 2019 0 7743
圖像處理池化層pooling和卷積核

1、池化層的作用 在卷積神經網絡中,卷積層之間往往會加上一個池化層。池化層可以非常有效地縮小參數矩陣的尺寸,從而減少最后全連層中的參數數量。使用池化層即可以加快計算速度也有防止過擬合的作用。 2、為什么max pooling要更常用? 通常來講,max-pooling的效果更好 ...

Tue Oct 09 23:35:00 CST 2018 0 2391
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM