github:代碼實現 本文算法均使用python3實現 1. 朴素貝葉斯是什么 依據《統計學方法》上介紹: 朴素貝葉斯法(Naive Bayes)是基於貝葉斯定理與特征條件獨立假設的分類方法。對於給定的訓練數據集,首先基於特征條件獨立假設學習輸入/輸出的聯合概率分布 ...
機器學習 之趣味案例理解朴素貝葉斯 轉載:https: mp.weixin.qq.com s s v afLVqtJhZyn qHlseQ 病人分類的例子 讓我從一個例子開始講起,你會看到貝葉斯分類器很好懂,一點都不難。某個醫院早上收了六個門診病人,如下表。 症狀 職業 疾病 打噴嚏 護士 感冒 打噴嚏 農夫 過敏 頭疼 建築工人 腦震盪 頭疼 建築工人 感冒 打噴嚏 教師 感冒 頭疼 教師 腦震 ...
2017-11-07 20:57 0 3379 推薦指數:
github:代碼實現 本文算法均使用python3實現 1. 朴素貝葉斯是什么 依據《統計學方法》上介紹: 朴素貝葉斯法(Naive Bayes)是基於貝葉斯定理與特征條件獨立假設的分類方法。對於給定的訓練數據集,首先基於特征條件獨立假設學習輸入/輸出的聯合概率分布 ...
我理解的朴素貝葉斯模型 我想說:“任何事件都是條件概率。”為什么呢?因為我認為,任何事件的發生都不是完全偶然的,它都會以其他事件的發生為基礎。換句話說,條件概率就是在其他事件發生的基礎上,某事件發生的概率。 條件概率是朴素貝葉斯模型的基礎。 假設,你的xx公司正在面臨着用戶流失的壓力 ...
條件概率 •設A,B為任意兩個事件,若P(A)>0,我們稱在已知事件A發生的條件下,事件B發生的概率為條件概率,記為P(B|A),並定義 乘法公式 •如果P(A)>0 ...
朴素貝葉斯模型 朴素貝葉斯的應用 朴素貝葉斯模型是文本領域永恆的經典,廣泛應用在各類文本分析的任務上。只要遇到了文本分類問題,第一個需要想到的方法就是朴素貝葉斯,它在文本分類任務上是一個非常靠譜的基准(baseline)。 比如對於垃圾郵件的分類,朴素貝葉斯 ...
目錄 一、貝葉斯 什么是先驗概率、似然概率、后驗概率 公式推導 二、為什么需要朴素貝葉斯 三、朴素貝葉斯是什么 條件獨立 舉例:長肌肉 拉普拉斯平滑 半朴素貝葉斯 一、貝葉斯 ...
先上問題吧,我們統計了14天的氣象數據(指標包括outlook,temperature,humidity,windy),並已知這些天氣是否打球(play)。如果給出新一天的氣象指標數據:sunny,c ...
朴素貝葉斯詳解 此博客參考借鑒算法學習者的blog,鏈接地址如下:https://blog.csdn.net/AMDS123/article/details/70173402#reply%23reply 貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎,故統稱為貝葉斯分類。而朴素貝 ...
目錄 貝葉斯公式 極大似然估計 貝葉斯估計 朴素貝葉斯算法 頻率 VS 概率 貝葉斯公式 貝葉斯公式: \[P(A|B)=\frac{P(B|A)P(A)}{P(B)} \] 在\(B\)出現的前提下\(A\)出現的概率 ...